• 제목/요약/키워드: wurtzite structure

검색결과 127건 처리시간 0.019초

수열합성법으로 성장된 ZnO 나노구조의 성장조건에 따른 특성 (Effects of Growth Conditions on Properties of ZnO Nanostructures Grown by Hydrothermal Method)

  • 조민영;김민수;김군식;최현영;전수민;임광국;이동율;김진수;김종수;이주인;임재영
    • 한국재료학회지
    • /
    • 제20권5호
    • /
    • pp.262-266
    • /
    • 2010
  • ZnO nanostructures were grown on an Au seed layer by a hydrothermal method. The Au seed layer was deposited by ion sputter on a Si (100) substrate, and then the ZnO nanostructures were grown with different precursor concentrations ranging from 0.01 M to 0.3M at $150^{\circ}C$ and different growth temperatures ranging from $100^{\circ}C$ to $250^{\circ}C$ with 0.3 M of precursor concentration. FE-SEM (field-emission scanning electron microscopy), XRD (X-ray diffraction), and PL (photoluminescence) were carried out to investigate the structural and optical properties of the ZnO nanostructures. The different morphologies are shown with different growth conditions by FE-SEM images. The density of the ZnO nanostructures changed significantly as the growth conditions changed. The density increased as the precursor concentration increased. The ZnO nanostructures are barely grown at $100^{\circ}C$ and the ZnO nanostructure grown at $150^{\circ}C$ has the highest density. The XRD pattern shows the ZnO (100), ZnO (002), ZnO (101) peaks, which indicated the ZnO structure has a wurtzite structure. The higher intensity and lower FWHM (full width at half maximum) of the ZnO peaks were observed at a growth temperature of $150^{\circ}C$, which indicated higher crystal quality. A near band edge emission (NBE) and a deep level emission (DLE) were observed at the PL spectra and the intensity of the DLE increased as the density of the ZnO nanostructures increased.

Zinc Oxide와 갈륨이 도핑 된 Zinc Oxide를 이용하여 Radio Frequency Magnetron Sputtering 방법에 의해 상온에서 제작된 박막 트랜지스터의 특성 평가 (Fabrication and Characteristics of Zinc Oxide- and Gallium doped Zinc Oxide thin film transistor using Radio Frequency Magnetron sputtering at Room Temperature)

  • 전훈하;;노경석;김도현;최원봉;전민현
    • 한국진공학회지
    • /
    • 제16권5호
    • /
    • pp.359-365
    • /
    • 2007
  • 본 논문에서는 zinc oxide (ZnO)와 gallium이 도핑 된 zinc oxide (GZO)를 이용하여 radio frequency (RF) magnetron sputtering 방법에 의해 상온에서 제작된 bottom-gate 박막 트랜지스터의 특성을 평가하고 분석하였다. 게이트 절연층 물질로서 새로운 물질을 사용하지 않고 열적 성장된 $SiO_2$를 사용하여 게이트 누설 전류를 수 pA 수준까지 줄일 수 있었다. ZnO와 GZO 박막의 표면 제곱평균제곱근은 각각 1.07 nm, 1.65 nm로 측정되었다. 그리고 ZnO 박막은 80% 이상, GZO 박막은 75% 이상의 투과도를 가지고 있었고, 박막의 두께에 따라 투과도가 달라졌다. 또한 두 시료 모두 (002) 방위로 잘 정렬된 wurtzite 구조를 가지고 있었다. 제작된 ZnO 박막 트랜지스터는 2.5 V의 문턱 전압, $0.027\;cm^2/(V{\cdot}s)$의 전계효과 이동도, 104의 on/off ratio, 1.7 V/decade의 gate voltage swing 값들을 가지고 있었고, enhancement 모드 특성을 가지고 있었다. 반면에 GZO 박막 트랜지스터의 경우에는 -3.4 V의 문턱 전압, $0.023\;cm^2/(V{\cdot}s)$의 전계효과 이동도, $2{\times}10^4$의 on/off ratio, 3.3 V/decade의 gate voltage swing 값들을 가지고 있었고, depletion 모드 특성을 가지고 있었다. 우리는 기존의 ZnO와 1wt%의 Ga이 도핑된 ZnO를 이용하여 두 가지 모드의 트랜지스터 특성을 보이는 박막 트랜지스터를 성공적으로 제작하고 분석하였다.

기판온도 및 공정압력이 Aldoped ZnO 박막의 특성에 미치는 영향 (Effect of Substrate temperatures and Working pressures on the properties of the AI-doped ZnO thin films)

  • 강성준;정양희
    • 한국정보통신학회논문지
    • /
    • 제14권3호
    • /
    • pp.691-698
    • /
    • 2010
  • 본 연구에서는 RF magnetron sputtering 법으로 AZO 세라믹 타켓 ($Al_2O_3$ : 3 wt%)을 이용하여 Eagle 2000 유리 기판위에 기판온도 ($100{\sim}500^{\circ}C$)와 공정압력 (10 ~ 40 mTorr)에 따른 AZO 박막을 제작하여, 결정화 특성과 전기적 및 광학적 특성을 조사하였다. 모든 AZO 박막은 육방정계구조를 가지는 다결정 이었고, (002)우선 배향성이 관찰되었다. 기판온도 $300^{\circ}C$, 10 mTorr에서 제작한 AZO 막에서 가장 우수한 (002) 배향성을 나타냈으며, 이때의 반가폭 값은 $0.42^{\circ}$였다. 전기적 특성은 기판온도 $300^{\circ}C$, 10 mTorr에서 가장 낮은 비저항 $2.64{\times}10^{-3}\;{\Omega}cm$과 우수한 캐리어 농도 및 이동도를 $5.29{\times}10^{20}\;cm^{-3}$, $6.23\;cm^2/Vs$를 나타내었다. 모든 AZO 박막은 가시광 영역에서 80%의 투과율을 나타내었으며, 기판온도 증가와 공정압력 감소에 따른 Al 도핑효과의 증가로 밴드 갭이 넓어지는 Burstein-Moss 효과가 관찰 되었다.

RTP 공정을 통한 태양전지용 AZO 박막의 후열처리 특성연구 (A Study on Properites of PV Solar cell AZO thin films post-annealing by RTP technique)

  • 양현훈;김한울;한창준;소순열;박계춘;이진;정해덕;이석호;백수웅;나길주;정운조
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.127.1-127.1
    • /
    • 2011
  • In this paper, ZnO:Al thin films with c-axis preferred orientation were prepared on Soda lime glass substrates by RF magnetron sputtering technique. AZO thin film were prepared in order to clarify optimum conditions for growth of the thin film depending upon process, and then by changing a number of deposition conditions and substrate temperature conditions variously, structural and electrical characteristics were measured. For the manufacture of the AZO were vapor-deposited in the named order. It is well-known that post-annealing is an important method to improve crystal quality. For the annealing process, the dislocation nd other defects arise in the material and adsorption/decomposition occurs. The XRD patterns of the AZO films deposited with grey theory prediction design, annealed in a vacuum ambient($2.0{\times}10-3$Torr)at temperatures of 200, 300, 400 and $500^{\circ}C$ for a period of 30min. The diffraction patterns of all the films show the AZO films had a hexagonal wurtzite structure with a preferential orientation along the c-axis perpendicular to the substrate surface. As can be seen, the (002)peak intensities of the AZO films became more intense and sharper when the annealing temperature increased. On the other hand, When the annealing temperature was $500^{\circ}C$ the peak intensity decreased. The surface morphologies and surface toughness of films were examined by atomic force microscopy(AFM, XE-100, PSIA). Electrical resistivity, Gall mobility and carrier concentration were measured by Hall effect measuring system (HL5500PC, Accent optical Technology, USA). The optical absorption spectra of films in the ultraviolet-visibleinfrared( UV-Vis-IR) region were recorder by the UV spectrophotometer(U-3501, Hitachi, Japan). The resistivity, carrier concentration, and Hall mobility of ZnS deposited on glass substrate as a function of post-annealing.

  • PDF

Site-selective Photoluminescence Spectroscopy of Er-implanted Wurtzite GaN under Various Annealing Condition

  • Kim, Sangsig;Sung, Man Young;Hong, Jinki;Lee, Moon-Sook
    • Transactions on Electrical and Electronic Materials
    • /
    • 제1권1호
    • /
    • pp.26-31
    • /
    • 2000
  • The ~1540 nm $^4$ $I_{13}$ 2/ longrightarro $w^4$ $I_{15}$ 2/ emissions of E $r^{3+}$ in Er-implanted GaN annealed at temperatures in the 400 to 100$0^{\circ}C$ range were investigated to gain a better understanding of the formation and dissociation processes of the various E $r^{3+}$ sites and the recovery of damage caused by the implantation with increasing annealing temperature ( $T_{A}$).The monotonic increase in the intensity of the broad defect photoluminescence(PL) bands with incresing $T_{A}$ proves that these are stable radiative recombination centers introduced by the implantation and annealing process. Theser centers cannot be attributed to implantation-induced damage that is removed by post-implantation annealing. Selective wavelength pumpling of PL spectra at 6K reveals the existence of at least nine different E $r^{3+}$ sites in this Er-implanted semiconductor. Most pf these E $r^{3+}$ PL centers are attributed to complexed of Er atoms with defects and impurities which are thermally activated at different $T_{A}$. Only one of the nine observed E $r^{3+}$ PL centers can be pumped by direct 4f absorption and this indicates that it is highest concentration E $r^{3+}$ center and it represents most of the optically active E $r^{3+}$ in the implanted sample. The fact that this E $r^{3+}$ center cannot be strongly pumped by above-gap light or broad band below-gap absorption indicates that it is an isolated center, i.e not complexed with defects or impurities, The 4f-pumped P: spectrum appears at annealing temperatures as low as 40$0^{\circ}C$, and although its intensity increase monotonically with increasing $T_{A}$ the wavelengths and linewidths of its characteristic peaks asre unaltered. The observation of this high quality E $r_{3+}$PL spectrum at low annealing temperatures illustrates that the crystalline structure of GaN is not rendered amorphous by the ion implantation. The increase of the PL intensities of the various E $R_{3+}$sites with increasing $T_{A}$is due to the removal of competing nonradiative channels with annealing. with annealing.annealing.

  • PDF

RF 마그네트론 스퍼터를 이용하여 제작한 MGZO 박막의 구조적 및 전기적, 광학적 특성에 미치는 스퍼터링 전력의 영향 (Effect of Sputtering Powers on Mg and Ga Co-Doped ZnO Thin Films with Transparent Conducting Characteristics)

  • 김인영;신승욱;김민성;윤재호;허기석;정채환;문종하;이정용;김진혁
    • 한국재료학회지
    • /
    • 제23권3호
    • /
    • pp.155-160
    • /
    • 2013
  • ZnO thin films co-doped with Mg and Ga (MxGyZzO, x + y + z = 1, x = 0.05, y = 0.02 and z = 0.93) were prepared on glass substrates by RF magnetron sputtering with different sputtering powers ranging from 100W to 200W at a substrate temperature of $350^{\circ}C$. The effects of the sputtering power on the structural, morphological, electrical, and optical properties of MGZO thin films were investigated. The X-ray diffraction patterns showed that all the MGZO thin films were grown as a hexagonal wurtzite phase with the preferred orientation on the c-axis without secondary phases such as MgO, $Ga_2O_3$, or $ZnGa_2O_4$. The intensity of the diffraction peak from the (0002) plane of the MGZO thin films was enhanced as the sputtering power increased. The (0002) peak positions of the MGZO thin films was shifted toward, a high diffraction angle as the sputtering power increased. Cross-sectional field emission scanning electron microscopy images of the MGZO thin films showed that all of these films had a columnar structure and their thickness increased with an increase in the sputtering power. MGZO thin film deposited at the sputtering power of 200W showed the best electrical characteristics in terms of the carrier concentration ($4.71{\times}10^{20}cm^{-3}$), charge carrier mobility ($10.2cm^2V^{-1}s^{-1}$) and a minimum resistivity ($1.3{\times}10^{-3}{\Omega}cm$). A UV-visible spectroscopy assessment showed that the MGZO thin films had high transmittance of more than 80 % in the visible region and that the absorption edges of MGZO thin films were very sharp and shifted toward the higher wavelength side, from 270 nm to 340 nm, with an increase in the sputtering power. The band-gap energy of MGZO thin films was widened from 3.74 eV to 3.92 eV with the change in the sputtering power.

반응성 때려내기 방법에 의한 스피넬 형 ZnCo2O4 박막의 성장과 전기적 물성 (Growth and Electrical Properties of Spinel-type ZnCo2O4 Thin Films by Reactive Magnetron Sputtering)

  • 송인창;김현중;심재호;김효진;김도진;임영언;주웅길
    • 한국재료학회지
    • /
    • 제13권8호
    • /
    • pp.519-523
    • /
    • 2003
  • We report the synthesis of cubic spinel $ZnCo_2$$O_4$thin films and the tunability of the conduction type by control of the oxygen partial pressure ratio. Zinc cobalt oxide films were grown on$ SiO_2$(200 nm)/Si substrates by reactive magnetron sputtering method using Zn and Co metal targets in a mixed Ar/$O_2$atmosphere. We found from X-ray diffraction measurements that the crystal structure of the zinc cobalt oxide films grown under an oxygen-rich condition (the $O_2$/Ar partial pressure ratio of 9/1) changes from wurtzite-type $Zn_{1-x}$ $Co_{X}$O to spinel-type $ZnCo_2$$O_4$with the increase of the Co/Zn sputtering ratio,$ D_{co}$ $D_{zn}$ . We noted that the above structural change accompanied by the variation of the majority electrical conduction type from n-type (electrons) to p-type (holes). For a fixed $D_{co}$ $D_{zn}$ / of 2.0 yielding homogeneous spinel-type $_2$O$ZnCo_4$films, the type of the majority carriers also varied, depending on the$ O_2$/Ar partial pressure ratio: p-type for an $O_2$-rich and n-type for an Ar-rich atmosphere. The maximum electron and hole concentrations for the Zn $Co_2$ $O_4$films were found to be 1.37${\times}$10$^{20}$ c $m^{-3}$ and 2.41${\times}$10$^{20}$ c $m^{-3}$ , respectively, with a mobility of about 0.2 $\textrm{cm}^2$/Vs and a high conductivity of about 1.8 Ω/$cm^{-1}$ /.