• Title/Summary/Keyword: wsn

Search Result 891, Processing Time 0.034 seconds

A Study on the Healthcare based on the Smart Device (스마트 디바이스 기반의 헬스캐어에 관한 연구)

  • Park, Chun-Myoung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.838-839
    • /
    • 2016
  • IEEE 802.15.4 is the standard wireless link technology for low power, low cost, but long lifetime applications including wireless sensor network (WSN). Currently, whether or not IP architecture should be used in WSN over its 802.15.4 link is under dispute. Such kind of arguments may last for a long time without some convincing experimental measurements of real case performances of IP over 802.15.4 implementation, and thus prevent the advance of related research. In RFC4944, IETF proposed the 6LoWPAN specification to enable IPv6 communication over low power, wireless personal area networks. We try to alleviate the dispute and make the direction clearer to the community so as to promote further valuable research in this topic.

  • PDF

Self Organized Map based Clustering for WSN Environment (WSN 환경을 위한 자체 조직 지도 기법 기반 클러스터링)

  • Kim, Min-Woo;Lee, Tae-Ho;Lee, Byung-Jun;Kim, Kyung-Tae;Youn, Hee-Yong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.07a
    • /
    • pp.113-114
    • /
    • 2019
  • 다수의 센서 노드로 구성된 IoT 환경에서는 네트워크 수명, 센서 노드의 통신 범위 제한과 같은 제약 사항들이 있다. 이러한 한계점을 해결하기 위해 밀집된 센서 노드 간의 협력이 필요하다. 이때, 밀집된 센서 노드들은 에너지 낭비 및 전송 데이터의 정확도를 저하시킨다. 본 연구에서는 데이터 집중으로 인해 발생하는 네트워크의 에너지 낭비 및 전송 데이터의 정확도 문제를 해결하기 위해 자체조직지도(Self Organized Map, SOM)를 기반으로 한 클러스터링 기법을 제안한다. 결과적으로 제안된 기법을 통하여 클러스터링 된 노드들은 다른 클러스터링 기법과 비교했을 때 밀도 기반의 정확한 예측 값을 얻을 수 있다.

  • PDF

GT-PSO- An Approach For Energy Efficient Routing in WSN

  • Priyanka, R;Reddy, K. Satyanarayan
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.17-26
    • /
    • 2022
  • Sensor Nodes play a major role to monitor and sense the variations in physical space in various real-time application scenarios. These nodes are powered by limited battery resources and replacing those resource is highly tedious task along with this it increases implementation cost. Thus, maintaining a good network lifespan is amongst the utmost important challenge in this field of WSN. Currently, energy efficient routing techniques are considered as promising solution to prolong the network lifespan where multi-hop communications are performed by identifying the most energy efficient path. However, the existing scheme suffer from performance related issues. To solve the issues of existing techniques, a novel hybrid technique by merging particle swarm optimization and game theory model is presented. The PSO helps to obtain the efficient number of cluster and Cluster Head selection whereas game theory aids in finding the best optimized path from source to destination by utilizing a path selection probability approach. This probability is obtained by using conditional probability to compute payoff for agents. When compared to current strategies, the experimental study demonstrates that the proposed GTPSO strategy outperforms them.

Proposal of Cluster Head Election Method in K-means Clustering based WSN (K-평균 군집화 기반 WSN에서 클러스터 헤드 선택 방법 제안)

  • Yun, Dai Yeol;Park, SeaYoung;Hwang, Chi-Gon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.447-449
    • /
    • 2021
  • Various wireless sensor network protocols have been proposed to maintain the network for a long time by minimizing energy consumption. Using the K-means clustering algorithm takes longer to cluster than traditional hierarchical algorithms because the center point must be moved repeatedly until the final cluster is established. For K-means clustering-based protocols, only the residual energy of nodes or nodes near the center point of the cluster is considered when the cluster head is elected. In this paper, we propose a new wireless sensor network protocol based on K-means clustering to improve the energy efficiency while improving the aforementioned problems.

  • PDF

INTERFERENCE CHARACTERISTICS OF CONSTRUCTION ENVIRONMENT FOR WSN APPLICATIONS

  • Sun-Chan Bae;Won-Sik Jang;Sang-Dae Park;Won-Suk Jang
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.592-595
    • /
    • 2013
  • Advent of Wireless Sensor Networks (WSN) has provided potentials to a variety of construction applications. It is well appreciated that WSNs have advantages over traditional wired system, such as ease of installation and maintenance with increased cost savings and efficiencies. However, the obstruction of wireless signal from physical objects in the heterogeneous construction environment often brings challenges to WSN measurement system. This paper analyzed the obstruction characteristic of construction environment where construction materials, equipment, and built structures obstruct the wireless signal yielding negative effect of measurement system. By adopting evaluation criteria, such as packet reception rate, field experiments have been implemented to quantitatively identify the interference of wireless signal from penetration, reflection, and network traffic under the construction environment. The results show that reliable performance of wireless sensor in construction environment depends on the optimal separation distance between a receiver and a transmitter, obstruction types, obstruction thickness, and transmission interval. In addition, the methodology and experimental results of this paper could be used in the practical design of network topology when hundreds of sensor nodes form a mesh network in the large scale construction applications.

  • PDF

Secure SLA Management Using Smart Contracts for SDN-Enabled WSN

  • Emre Karakoc;Celal Ceken
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.11
    • /
    • pp.3003-3029
    • /
    • 2023
  • The rapid evolution of the IoT has paved the way for new opportunities in smart city domains, including e-health, smart homes, and precision agriculture. However, this proliferation of services demands effective SLAs between customers and service providers, especially for critical services. Difficulties arise in maintaining the integrity of such agreements, especially in vulnerable wireless environments. This study proposes a novel SLA management model that uses an SDN-Enabled WSN consisting of wireless nodes to interact with smart contracts in a straightforward manner. The proposed model ensures the persistence of network metrics and SLA provisions through smart contracts, eliminating the need for intermediaries to audit payment and compensation procedures. The reliability and verifiability of the data prevents doubts from the contracting parties. To meet the high-performance requirements of the blockchain in the proposed model, low-cost algorithms have been developed for implementing blockchain technology in wireless sensor networks with low-energy and low-capacity nodes. Furthermore, a cryptographic signature control code is generated by wireless nodes using the in-memory private key and the dynamic random key from the smart contract at runtime to prevent tampering with data transmitted over the network. This control code enables the verification of end-to-end data signatures. The efficient generation of dynamic keys at runtime is ensured by the flexible and high-performance infrastructure of the SDN architecture.

Source-Location Privacy in Wireless Sensor Networks (무선 센서 네트워크에서의 소스 위치 프라이버시)

  • Lee, Song-Woo;Park, Young-Hoon;Son, Ju-Hyung;Kang, Yu;Choe, Jin-Gi;Moon, Ho-Gun;Seo, Seung-Woo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.17 no.2
    • /
    • pp.125-137
    • /
    • 2007
  • This paper proposes a new scheme to provide the location privacy of sources in Wireless Sensor Networks (WSNs). Because the geographical location of a source sensor reveals contextual information on an 'event' in WSN, anonymizing the source location is an important issue. Despite abundant research efforts, however, about data confidentiality and authentication in WSN, privacy issues have not been researched well so far. Moreover, many schemes providing the anonymity of communication parties in Internet and Ad-hoc networks are not appropriate for WSN environments where sensors are very resource limited and messages are forwarded in a hop-by-hop manner through wireless channel. In this paper, we first categorize the type of eavesdroppers for WSN as Global Eavesdropper and Compromising Eavesdropper. Then we propose a novel scheme which provides the anonymity of a source according to the types of eavesdroppers. Furthermore, we analyze the degree of anonymity of WSN using the entropy-based modeling method. As a result, we show that the proposed scheme improves the degree of anonymity compared to a method without any provision of anonymity and also show that the transmission range plays a key role to hide the location of source sensors.

Secure Key Management Protocol in the Wireless Sensor Network

  • Jeong, Yoon-Su;Lee, Sang-Ho
    • Journal of Information Processing Systems
    • /
    • v.2 no.1
    • /
    • pp.48-51
    • /
    • 2006
  • To achieve security in wireless sensor networks (WSN), it is important to be able to encrypt messages sent among sensor nodes. We propose a new cryptographic key management protocol, which is based on the clustering scheme but does not depend on the probabilistic key. The protocol can increase the efficiency to manage keys since, before distributing the keys by bootstrap, the use of public keys shared among nodes can eliminate the processes to send or to receive keys among the sensors. Also, to find any compromised nodes safely on the network, it solves safety problems by applying the functions of a lightweight attack-detection mechanism.

Lode Location Management Using RSSI Regression Analysis in Wireless Sensor Network (RSSI의 회귀 분석을 이용한 무선센서노드의 위치관리)

  • Yang, Hyun-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.9
    • /
    • pp.1935-1940
    • /
    • 2009
  • One of the key technical challenges of wireless sensor network (WSN) is location management of sensor nodes. Typical node location management methods use GPS, ultrasonic sensors or RSSI. In this paper we propose a new location management method which adopts regression analysis of RSSI measurement to improve the accuracy of sensor node position estimation. We also evaluated the performance of proposed method by comparing the experimental results with existing scheme. According to the results, our proposed method, LM-RAR, shows better accuracy than existing location management scheme using RSSI and Friis' equation.