• Title/Summary/Keyword: wsn

Search Result 891, Processing Time 0.024 seconds

Analytical Approach of Multicasting-supported Inter-Domain Mobility Management in Sensor-based Fast Proxy Mobile IPv6 Networks

  • Jang, Ha-Na;Jeong, Jong-Pil
    • International journal of advanced smart convergence
    • /
    • v.1 no.2
    • /
    • pp.1-11
    • /
    • 2012
  • IP-based Wireless Sensor Networks (IP-WSNs) are gaining importance for their broad range of applications in health care, home automation, environmental monitoring, industrial control, vehicle telematics, and agricultural monitoring. In all these applications, a fundamental issue is the mobility in the sensor network, particularly with regards to energy efficiency. Because of the energy inefficiency of network-based mobility management protocols, they can be supported via IP-WSNs. In this paper, we propose a network-based mobility-supported IP-WSN protocol called mSFP, or the mSFP: "Multicasting-supported Inter-Domain Mobility Management Scheme in Sensor-based Fast Proxy Mobile IPv6 Networks". Based on [8,20], we present its network architecture and evaluate its performance by considering the signaling and mobility cost. Our analysis shows that the proposed scheme reduces the signaling cost, total cost, and mobility cost. With respect to the number of IP-WSN nodes, the proposed scheme reduces the signaling cost by 7% and the total cost by 3%. With respect to the number of hops, the proposed scheme reduces the signaling cost by 6.9%, the total cost by 2.5%, and the mobility cost by 1.5%. With respect to the number of IP-WSN nodes, the proposed scheme reduces the mobility cost by 1.6%.

NUND: Non-Uniform Node Distribution in Cluster-based Wireless Sensor Networks

  • Ren, Ju;Zhang, Yaoxue;Lin, Xiaodong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.7
    • /
    • pp.2302-2324
    • /
    • 2014
  • Cluster-based wireless sensor network (WSN) can significantly reduce the energy consumption by data aggregation and has been widely used in WSN applications. However, due to the intrinsic many-to-one traffic pattern in WSN, the network lifetime is generally deteriorated by the unbalanced energy consumption in a cluster-based WSN. Therefore, energy efficiency and network lifetime improvement are two crucial and challenging issues in cluster-based WSNs. In this paper, we propose a Non-Uniform Node Distribution (NUND) scheme to improve the energy efficiency and network lifetime in cluster-based WSNs. Specifically, we first propose an analytic model to analyze the energy consumption and the network lifetime of the cluster-based WSNs. Based on the analysis results, we propose a node distribution algorithm to maximize the network lifetime with a fixed number of sensor nodes in cluster-based WSNs. Extensive simulations demonstrate that the theoretical analysis results determined by the proposed analytic model are consistent with the simulation results, and the NUND can significantly improve the energy efficiency and network lifetime.

Static Worst-Case Energy and Lifetime Estimation of Wireless Sensor Networks

  • Liu, Yu;Zhang, Wei;Akkaya, Kemal
    • Journal of Computing Science and Engineering
    • /
    • v.4 no.2
    • /
    • pp.128-152
    • /
    • 2010
  • With the advance of computer and communication technologies, wireless sensor networks (WSNs) are increasingly used in many aspects of our daily life. However, since the battery lifetime of WSN nodes is restricted, the WSN lifetime is also limited. Therefore, it is crucial to determine this limited lifetime in advance for preventing service interruptions in critical applications. This paper proposes a feasible static analysis approach to estimating the worstcase lifetime of a WSN. Assuming known routes with a given sensor network topology and SMAC as the underlying MAC protocol, we statically estimate the lifetime of each sensor node with a fixed initial energy budget. These estimations are then compared with the results obtained through simulation which run with the same energy budget on each node. Experimental results of our research on TinyOS applications indicate that our approach can safely and accurately estimate worst-case lifetime of the WSN. To the best of our knowledge, our work is the first one to estimate the worst-case lifetime of WSNs through a static analysis method.

Height Prediction Mechanism for Smart Surveillance Systems (지능형 보안 감시 시스템을 위한 높이 예측 메커니즘)

  • Shim, Jaeseok;Lim, Yujin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.3 no.7
    • /
    • pp.241-244
    • /
    • 2014
  • Wireless Sensor Network(WSN) has been attracting lots of interest in recent years for smart surveillance systems. WSN-based surveillance systems need to figure out the occurrence or existence of events or objects and to find out where the events have occurred or the objects are present. In our surveillance system, it is needed to give an alarm only when the detected object is human (not pets or rodents) for reducing false alarms and improving the system reliability. In this paper, we propose a height prediction mechanism to determine if the detected object is human using Heron's formula. Finally, we verify the performance of our proposed mechanism through various experiments.

HDRE: Coverage Hole Detection with Residual Energy in Wireless Sensor Networks

  • Zhang, Yunzhou;Zhang, Xiaohua;Fu, Wenyan;Wang, Zeyu;Liu, Honglei
    • Journal of Communications and Networks
    • /
    • v.16 no.5
    • /
    • pp.493-501
    • /
    • 2014
  • Coverage completeness is an important indicator for quality of service in wireless sensor networks (WSN). Due to limited energy and diverse working conditions, the sensor nodes have different lifetimes which often cause network holes. Most of the existing methods expose large limitation and one-sidedness because they generally consider only one aspect, either coverage rate or energy issue. This paper presents a novel method for coverage hole detection with residual energy in randomly deployed wireless sensor networks. By calculating the life expectancy of working nodes through residual energy, we make a trade-off between network repair cost and energy waste. The working nodes with short lifetime are screened out according to a proper ratio. After that, the locations of coverage holes can be determined by calculating the joint coverage probability and the evaluation criteria. Simulation result shows that compared to those traditional algorithms without consideration of energy problem, our method can effectively maintain the coverage quality of repaired WSN while enhancing the life span of WSN at the same time.

Data Direction Aware Clustering Method in Sensor Networks (데이터 전송방향을 고려한 센서네트워크 클러스터링 방법)

  • Jo, O-Hyoung;Kwon, Tae-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.7B
    • /
    • pp.721-727
    • /
    • 2009
  • Wireless Sensor Networks(WSN) make use of low cost and energy constrained sensor nodes. Thus, reaching the successful execution of its tasks with low energy consumption is one of the most important issues. The limitation of existing hierarchical algorithms is that many times the data are transmitted to the opposite direction to the sink. In this paper, DDACM (Data Direction Aware Clustering Method) is proposed. In this method, the nearest node to the sink is elected as cluster head, and when its energy level reaches a threshold value, the cluster head is reelected. We also make a comparison with LEACH showing how this method can reduce the energy consumption minimizing the reverse direction data transmission.

A Robust Wearable u-Healthcare Platform in Wireless Sensor Network

  • Lee, Seung-Chul;Chung, Wan-Young
    • Journal of Communications and Networks
    • /
    • v.16 no.4
    • /
    • pp.465-474
    • /
    • 2014
  • Wireless sensor network (WSN) is considered to be one of the most important research fields for ubiquitous healthcare (u-healthcare) applications. Healthcare systems combined with WSNs have only been introduced by several pioneering researchers. However, most researchers collect physiological data from medical nodes located at static locations and transmit them within a limited communication range between a base station and the medical nodes. In these healthcare systems, the network link can be easily broken owing to the movement of the object nodes. To overcome this issue, in this study, the fast link exchange minimum cost forwarding (FLE-MCF) routing protocol is proposed. This protocol allows real-time multi-hop communication in a healthcare system based on WSN. The protocol is designed for a multi-hop sensor network to rapidly restore the network link when it is broken. The performance of the proposed FLE-MCF protocol is compared with that of a modified minimum cost forwarding (MMCF) protocol. The FLE-MCF protocol shows a good packet delivery rate from/to a fast moving object in a WSN. The designed wearable platform utilizes an adaptive linear prediction filter to reduce the motion artifacts in the original electrocardiogram (ECG) signal. Two filter algorithms used for baseline drift removal are evaluated to check whether real-time execution is possible on our wearable platform. The experiment results shows that the ECG signal filtered by adaptive linear prediction filter recovers from the distorted ECG signal efficiently.

Efficient and Secure Routing Protocol forWireless Sensor Networks through SNR Based Dynamic Clustering Mechanisms

  • Ganesh, Subramanian;Amutha, Ramachandran
    • Journal of Communications and Networks
    • /
    • v.15 no.4
    • /
    • pp.422-429
    • /
    • 2013
  • Advances in wireless sensor network (WSN) technology have enabled small and low-cost sensors with the capability of sensing various types of physical and environmental conditions, data processing, and wireless communication. In the WSN, the sensor nodes have a limited transmission range and their processing and storage capabilities as well as their energy resources are limited. A triple umpiring system has already been proved for its better performance in WSNs. The clustering technique is effective in prolonging the lifetime of the WSN. In this study, we have modified the ad-hoc on demand distance vector routing by incorporating signal-to-noise ratio (SNR) based dynamic clustering. The proposed scheme, which is an efficient and secure routing protocol for wireless sensor networks through SNR-based dynamic clustering (ESRPSDC) mechanisms, can partition the nodes into clusters and select the cluster head (CH) among the nodes based on the energy, and non CH nodes join with a specific CH based on the SNR values. Error recovery has been implemented during the inter-cluster routing in order to avoid end-to-end error recovery. Security has been achieved by isolating the malicious nodes using sink-based routing pattern analysis. Extensive investigation studies using a global mobile simulator have shown that this hybrid ESRP significantly improves the energy efficiency and packet reception rate as compared with the SNR unaware routing algorithms such as the low energy aware adaptive clustering hierarchy and power efficient gathering in sensor information systems.

Secure and Robust Clustering for Quantized Target Tracking in Wireless Sensor Networks

  • Mansouri, Majdi;Khoukhi, Lyes;Nounou, Hazem;Nounou, Mohamed
    • Journal of Communications and Networks
    • /
    • v.15 no.2
    • /
    • pp.164-172
    • /
    • 2013
  • We consider the problem of secure and robust clustering for quantized target tracking in wireless sensor networks (WSN) where the observed system is assumed to evolve according to a probabilistic state space model. We propose a new method for jointly activating the best group of candidate sensors that participate in data aggregation, detecting the malicious sensors and estimating the target position. Firstly, we select the appropriate group in order to balance the energy dissipation and to provide the required data of the target in the WSN. This selection is also based on the transmission power between a sensor node and a cluster head. Secondly, we detect the malicious sensor nodes based on the information relevance of their measurements. Then, we estimate the target position using quantized variational filtering (QVF) algorithm. The selection of the candidate sensors group is based on multi-criteria function, which is computed by using the predicted target position provided by the QVF algorithm, while the malicious sensor nodes detection is based on Kullback-Leibler distance between the current target position distribution and the predicted sensor observation. The performance of the proposed method is validated by simulation results in target tracking for WSN.

Performance and Energy Consumption Analysis of 802.11 with FEC Codes over Wireless Sensor Networks

  • Ahn, Jong-Suk;Yoon, Jong-Hyuk;Lee, Kang-Woo
    • Journal of Communications and Networks
    • /
    • v.9 no.3
    • /
    • pp.265-273
    • /
    • 2007
  • This paper expands an analytical performance model of 802.11 to accurately estimate throughput and energy demand of 802.11-based wireless sensor network (WSN) when sensor nodes employ Reed-Solomon (RS) codes, one of block forward error correction (FEC) techniques. This model evaluates these two metrics as a function of the channel bit error rate (BER) and the RS symbol size. Since the basic recovery unit of RS codes is a symbol not a bit, the symbol size affects the WSN performance even if each packet carries the same amount of FEC check bits. The larger size is more effective to recover long-lasting error bursts although it increases the computational complexity of encoding and decoding RS codes. For applying the extended model to WSNs, this paper collects traffic traces from a WSN consisting of two TIP50CM sensor nodes and measures its energy consumption for processing RS codes. Based on traces, it approximates WSN channels with Gilbert models. The computational analyses confirm that the adoption of RS codes in 802.11 significantly improves its throughput and energy efficiency of WSNs with a high BER. They also predict that the choice of an appropriate RS symbol size causes a lot of difference in throughput and power waste over short-term durations while the symbol size rarely affects the long-term average of these metrics.