• 제목/요약/키워드: wrapped skew-normal

검색결과 4건 처리시간 0.017초

겹친왜정규혼합분포를 이용한 비대칭 원형자료의 모형화 (Modeling on asymmetric circular data using wrapped skew-normal mixture)

  • 나종화;장영미
    • Journal of the Korean Data and Information Science Society
    • /
    • 제21권2호
    • /
    • pp.241-250
    • /
    • 2010
  • 원형자료에 대한 모형화 분석은 주로 von Mises 분포를 비롯한 대칭형의 경우를 중심으로 많은 연구가 이루어져 왔다. 최근 선형자료의 분석에서 다양한 비대칭의 자료에 적합한 왜정규분포의 활용에 대한 연구가 활발히 수행되고 있다. 본 논문에서는 Pewsey (2000a)에 의해 처음 소개된 겹친왜정규분포를 이용한 비대칭의 원형자료에 대한 적합을 다루었다. 특히 비대칭 다봉형 원형자료의 적합을 위해 겹친왜정규혼합분포를 제안하고, EM 알고리즘을 통한 모수추정 과정을 제시하였다. 모의실험을 통해 EM 알고리즘을 통한 모수추정의 정확성을 확인하고, 실제 지방국도의 일일교통량 자료의 모형화 분석에 적용하였다.

Projected Circular and l-Axial Skew-Normal Distributions

  • Seo, Han-Son;Shin, Jong-Kyun;Kim, Hyoung-Moon
    • 응용통계연구
    • /
    • 제22권4호
    • /
    • pp.879-891
    • /
    • 2009
  • We developed the projected l-axial skew-normal(LASN) family of distributions for I-axial data. The LASN family of distributions contains the semicircular skew-normal(SCSN) and the circular skew-normal(CSN) families of distributions as special cases. The LASN densities are similar to the wrapped skew-normal densities for the small values of the scale parameter. However CSN densities have more heavy tails than those of the wrapped skew-normal densities on the circle. Furthermore the CSN densities have two modes as the scale parameter increases. The LASN distribution has very convenient mathematical features. We extend the LASN family of distributions to a bivariate case.

Modeling Circular Data with Uniformly Dispersed Noise

  • Yu, Hye-Kyung;Jun, Kyoung-Ho;Na, Jong-Hwa
    • 응용통계연구
    • /
    • 제25권4호
    • /
    • pp.651-659
    • /
    • 2012
  • In this paper we developed a statistical model for circular data with noises. In this case, model fitting by single circular model has a lack-of-fit problem. To overcome this problem, we consider some mixture models that include circular uniform distribution and apply an EM algorithm to estimate the parameters. Both von Mises and Wrapped skew normal distributions are considered in this paper. Simulation studies are executed to assess the suggested EM algorithms. Finally, we applied the suggested method to fit 2008 EHFRS(Epidemic Hemorrhagic Fever with Renal Syndrome) data provided by the KCDC(Korea Centers for Disease Control and Prevention).

혼합원형분포를 이용한 지방국도의 시간교통량 추정모형 (Modeling on Daily Traffic Volume of Local State Road Using Circular Mixture Distributions)

  • 나종화;장영미
    • 응용통계연구
    • /
    • 제24권3호
    • /
    • pp.547-557
    • /
    • 2011
  • 본 논문에서는 우리나라 지방국도의 특정지점에서 수집된 교통량 자료를 이용하여 일일 시간교통량 추정모형을 개발하였다. 본 연구의 특징은 일일 24시의 시간변수를 원형변수로 취급하고, 지방부 교통량 자료의 특성상 출퇴근 시간에 교통량이 집중되는 이봉형의 현상을 감안하여 원형분포의 혼합모형을 고려하였다. 또한 시간대별 교통량의 분포가 요일에 따라 유사한 패턴을 가지는 데 착안하여 요일별 모형을 제시하였다. 혼합원형분포의 모수추정에는 EM알고리즘이 사용되었으며, 모형의 성능비교를 위해 가변수 회귀모형과의 비교를 실시하였다. 제시된 요일별 지방국도의 시간교통량 적합모형은 계측기의 손상 등으로 인한 교통량 결측자료의 추정에 효과적으로 사용될 수 있다.