• Title/Summary/Keyword: wrap angle

Search Result 27, Processing Time 0.019 seconds

A Study on performance analysis of screw rotor profiles (스크류 로터 치형의 성능해석에 관한 연구)

  • Choi, Sang-Hoon;Kim, Dong-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.1
    • /
    • pp.69-77
    • /
    • 1996
  • To design high-effective profile in screw rotor profile using in screw compressor, we design the symmetric type changing the number of lobes and the non-symmetric type changing the neighbourhood of the top point of lobe. Then, we calculated the performance value of profile according to the scale of these non-symmetric's wrap angle. We had the results as follows. 1. About the non-symmetric case, the larger a wrap angle is the shorter seal line is and the smaller blow hole is, thus we know what the large wrap angle profile is better than the small one. 2. We know what the non-symmetric profile is better than the symmetric profile in the result of the compare of seal line's length, blow hole's area, volume curve. 3. About the non-symmetric case, the deformation of the neighbourhood of lobe's top point of the rotor profile has a large effect upon the increase of performance because the length of seal line became short and the area of blow hole is small.

  • PDF

Machining Simulation Program for Symmetric Rotors in Screw Compressor as Wrap Angle (권선각 변화에 따른 스크류압축기의 대칭형 로터용 가공 시뮬레이션 프로그램)

  • Kim, Yeon-Su;Choi, Boo-Hee;Park, Jae-Min;Choi, Sang-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.1026-1034
    • /
    • 2002
  • This paper describes the development of machining simulation program which is able to design cutter profile and 3-dimensional geometry for rotors in screw compressor. Based on the symmetric rotor profiles developed previously, cutters are designed and 3-dimensional geometries of rotors are generated by using simulation program. Symmetric rotors are manufactured by a universal milling machine, and surface geometries of them are measured by a 3-dimension scanner It is shown that simulation program developed is useful to design cutter for rotor manufacturing and to generate the 3-dimensional helicoid geometry of rotor in screw compressor.

A Study on the Applicability of a Scroll Type Compressor to Small Capacity Refrigerators (소형 냉장고에 대한 스크롤 압축기 적용성에 관한 연구)

  • Kim, You-Chan;Kim, Woo-Young;Kim, Hyun-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.2
    • /
    • pp.164-173
    • /
    • 2012
  • To study the applicability of a scroll type compressor to small capacity refrigerators, a R600a scroll compressor with algebraic scroll wrap has been designed. Its size and performance have been compared to a reciprocating type of the same displacement volume. By employing scroll wrap based on algebraic curve, high compression ratio can be accomplished without increasing the wrap angle much so that compact scroll may be obtained. Compared to a reciprocating one, the designed scroll compressor has diameter and height reduced by about 50% and 80%, respectively. By numerical simulation, it has been estimated that the scroll compressor provides 38.6% more cooling capacity than reciprocating type with 8.9% more power consumption, resulting in 27.3% increase in COP for ASHRAE low back pressure condition. With increasing the operating pressure ratio from 9.5 to 15.3, the overall compressor efficiency of the scroll compressor decreases from 72.6% to 65.2%, while that of the reciprocating compressor increases from 55.7% to 59.8%.

A Study on the Leakage Analysis of Scroll Compressor with Thermal Deformation Considered (열변형을 고려한 스크롤 압축기의 누설 해석에 관한 연구)

  • Gu, In-Hoe;Park, Jin-Mu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2428-2437
    • /
    • 2000
  • In general, it is known that the portion of leakage loss is more than 20 % of total loss in scroll compressor. So far many studies have been done to improve the leakage problem and volumetric efficiency. In order to do this it is necessary that the leakage is exactly evaluated for conventional scroll model. Almost all studies that have been done were assumed that the clearance remains constant while operating. But in actual operating conditions, scroll wrap is deformed due to elevated refrigerant gas temperature. And this makes the leakage clearance change, so the leakage mass flow and the volumetric efficiency are also changed. In this study we assumed the steady state operating condition and obtain the average temperature and convection heat transfer coefficient in terms of involute angle. With these results, using finite element method we analyzed the heat transfer of scroll wrap, then did thermal deformation analysis. Then we obtain the leakage clearance and do the leakage and volumetric efficiency analysis. Compared with undeformed feature, we examine the effect of the thermal deformation on the leakage. The results say that the leakage mass flow for the case of considering thermal deformation is less than that for the unconsidered one, and this means that the leakage clearance is reduced due to thermal deformation.

FSI(Fluid-Structure Interaction) Analysis for Harmonious Operation of High-Speed Printing Machine

  • Kim, Jin-Ho;Lee, Jae-Woo;Park, Soo-Hyung;Byun, Do-Young;Byun, Yung-Hwan;Lee, Chang-Jin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.1
    • /
    • pp.137-146
    • /
    • 2008
  • Proper amount of entrained air and nip force should be also considered to minimize ballooning phenomenon since tight contact between a roller and web is required. In this paper, various web materials, PET(Polyester) and OPP(Oriented Poly Propylene) have been selected and investigated to satisfy high-speed printing requirement. Several web speeds, web tensions, and temperature conditions are imposed on each web materials and the pressure and gap profiles as well as nip force have been calculated. Increase of both the winding roller radius and the incoming wrap angle is considered under proper taper tension at 500 m/min of rewinding roller. By solving coupled Reynolds equation and web deflection equation simultaneously, the fluid-structure interaction process has been developed and is applied to the rewinding roller to investigate the ballooning phenomenon which causes guiding problems in high-speed printing performance conditions. By adjusting the linear taper tension, stress distribution between rewinding webs can be remarkably reduced and stable pressure and gap profile with ignorable ballooning phenomenon have been found.

Development of the Automatic Knee Joint Control System for a Knee-Ankle-Foot Orthosis Using an Electromechanical Clutch (전자-기계식 클러치를 이용한 장하지 보조기용 무릎관절 자동 제어 장치의 개발)

  • 이기원;강성재;김영호;조강희
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.4
    • /
    • pp.359-368
    • /
    • 2001
  • A new knee-ankle-foot-orthosis(KAFO) which uses an automatically-controlled electromechanical wrap spring clutch for the knee joint was developed in the present study. It was found that the output voltage from the foot switches of the developed KAFO was proportionally increased with respect to the applied load. The output voltage from the infrared sensor also decreased as the knee flexion angle increased. The knee joint system for the new KAFO weighs only 780g lighter than any other commercially available developed system. In addition, the solenoid reduces the reaction time for the automatic control of the knee joint. The static torque of the clutch was measured for three persons, and it satisfied the normal knee extension moment during the pre-swing. Three-dimensional gait analyses for three different gait patterns (normal gait, locked-knee gait, controlled-knee gait) from five normal subjects were conducted. Controlled-knee gait showed the maximum knee flexion angle of 40.56$\pm9.55^{\circ}$ and the maximum knee flexion moment of 0.20$\pm$0.07Nm/kg at similar periods in the normal gait. Our KAFO system satisfies both stability during stance phase and free knee flexion during the swing phase at the proper period during the gait cycle. Therefore, our KAFO system would be very useful in various low extremity orthotic applications.

  • PDF

Stability of the axially compliant fixed scroll in scroll compressors (스크롤 압축기에서 축방향 순응하는 고정부재의 안정성)

  • Kim, H.J.;Lee, W.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.2
    • /
    • pp.93-103
    • /
    • 1997
  • This study presents a way of improving the stability of fixed scroll in scroll compressors. For the scroll compressor whose fixed scroll is designed to move in the axial direction for the axial compliance, the fixed scroll is under the influence of the overturning moment produced by internal gas forces. Unless the overturning moment is properly compensated by the moments of reaction forces at the suspension of the fixed scroll to the compressor frame, the fixed scroll would exhibit wobbling motion, increasing gas leakage through the gap induced by the wobbling of the fixed scroll between the two scroll members. The conditions on which the wobbling motion can be suppressed have been found analytically; The axial position of the fixed scroll suspension should be made within a certain range. The upper limit of this range is the axial location for the o-rings which are inserted between the fixed scroll and the back pressure chamber to promote sealing for the gas in the back pressure chamber. And the lower limit is mainly determined by the magnitude of the axial sealing force. As long as the axial sealing force is not negative over all crank angles, the lower limit is not above the mid-height of the scroll wrap. Larger axial sealing force lower the lower limit.

  • PDF

Performance Analysis of Scroll Expander-Compressor Unit for $CO_2$ Transcritical Cycles ($CO_2$ 초임계 사이클을 위한 일체형 스크롤 팽창기-압축기 성능해석)

  • Kim Hyun-Jin;Nam Bo-Young;Ahn Jong-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.5
    • /
    • pp.434-442
    • /
    • 2006
  • In a two-stage compression $CO_2$ transcritical cycle, application of a scroll expander-compressor unit has been considered in order to improve the cycle COP. For both expander and 1st stage compressor, scroll wrap profile which was originally designed for a R410A air-conditioning cycle mechanism was used with minor modifications: wrap height and involute end angle were adjusted for required displacement volume and built-in volume ratio. For pressure condition of 10 Mpa/3.5 MPa and expander inlet temperature of $35^{\circ}C$, 25% improvement in COP was obtained by using expander-compressor unit. As evaporator pressure increased, COP improvement was lowered mainly due to decreasing compressor peformance.

Easy and Simple Techniques to Reconstruct Natural Nailfold with the Wrap-around Flap for Finger Reconstruction

  • Takeo Matsusue
    • Archives of Plastic Surgery
    • /
    • v.49 no.6
    • /
    • pp.764-768
    • /
    • 2022
  • The wrap-around flap (WAF) has become a popular approach to thumb reconstruction because the results are functionally and cosmetically excellent. By modifying to a partial toenail transfer, the WAF can also be used for finger reconstruction. However, performing cosmetically superior finger reconstruction is a significant challenge because it is difficult to reconstruct the natural nailfold by partial nail transplantation, although partial nail transplantation is required to reconstruct a narrow fingernail. One side of the reconstructed lateral nailfold tends to be a missing nail margin, and one side of the proximal nailfold angle tends to be retracted. Based on the rationale that loss of the lateral nailfold volume due to the postoperative tension of the volar flap would result in a missing nail margin, the volume of the lateral nailfold was maintained with a single thread that was passed from the nail to the volar flap. Additionally, half of the proximal nailfold from the nail plate was elevated to advance it forward. The results indicated that a cosmetically natural nailfold was achieved with the WAF approach to finger reconstruction. These easy and simple techniques enable reconstruction of a cosmetically natural nailfold using WAF for finger reconstruction.

Hemming Process Design of the Permalloy Shielding Can for the Stiffness and Shape Accuracy (퍼멀로이 실딩캔의 강성증대 및 형상 정밀도를 위한 최적 헤밍 공정설계)

  • Lee, Sun-Bong;Kim, Dong-Hwan;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.5
    • /
    • pp.29-35
    • /
    • 2002
  • This study shows the process design and forming analysis of permalloy shielding can that support the automobile multi-display parts to indicate the accurate information of car. This study is particularly important, since the accuracy of permalloy shielding can is known to affect the magnetic properties such as coercivity and permeability quite sensitively. The objective functions are defects such as hemming wind, hemming length, hemming wrap and tightness in prehemming process. The pre-hemming angle is considered as design parameter. The commercial finite element program PAM-STAMP™ was used to simulate the pre-hemming and hemming process. The ANN (Artificial Neural Network) has been implemented for minimizing of objective function and for investigating effect of punch angle relevant to the pre-hemming process. The results of analysis to validate the proposed design method are presented.