• 제목/요약/키워드: wpc

검색결과 150건 처리시간 0.029초

고충진 압출성형 합성목재를 이용한 모듈러 돔의 구조모델링에 관한 연구 (A Study of Modular Dome Structural Modeling with Highly Filled Extrusion Wood-Plastic Composite Member)

  • 손수덕;곽의신;이승재
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제19권2호
    • /
    • pp.76-83
    • /
    • 2015
  • 본 연구의 목적은 고충진 합성목재를 이용하여 친환경 모듈러 돔 구조시스템을 개발하고 부재와 절점을 모듈화하여 실제 구조체을 제작하는 것이다. 기존의 합성목재에 비해 높은 70% 목분함량 합성목재를 돔 구조모델의 부재로 이용하였고, 정이십면체 기반 지오데직 돔의 기하학적 특성을 분석하여 절점과 부재를 모듈화 하였다. 돔의 제작을 위한 모듈화와 실제 구조물의 제작과정의 연구결과로부터 6가지 절점과 3개의 부재종류의 모듈러 돔에 대한 적용성을 검토할 수 있었다. 또한 해석결과에서 최저차 좌굴모드는 경계부의 절점에서 절점좌굴이 예상되었다.

Production of Functional High-protein Beverage Fermented with Lactic Acid Bacteria Isolated from Korean Traditional Fermented Food

  • Cho, Young-Hee;Shin, Il-Seung;Hong, Sung-Moon;Kim, Cheol-Hyun
    • 한국축산식품학회지
    • /
    • 제35권2호
    • /
    • pp.189-196
    • /
    • 2015
  • The aim of this study was to manufacture functional high protein fermented beverage, using whey protein concentrate (WPC) and Lactobacillus plantarum DK211 isolated from kimchi, and to evaluate the physicochemical, functional, and sensory properties of the resulting product. The fermented whey beverage (FWB) was formulated with whey protein concentrate 80 (WPC 80), skim milk powder, and sucrose; and fermented with Lactobacillus plantarum DK211 as single, or mixed with Lactococcus lactis R704, a commercial starter culture. The pH, titratable acidity, and viable cell counts during fermentation and storage were evaluated. It was found that the mixed culture showed faster acid development than the single culture. The resulting FWB had high protein (9%) and low fat content (0.2%). Increased viscosity, and antioxidant and antimicrobial activity were observed after fermentation. A viable cell count of 109 CFU/mL in FWB was achieved within 10 h fermentation, and it remained throughout storage at 15℃ for 28 d. Sensory analysis was also conducted, and compared to that of a commercial protein drink. The sensory scores of FWB were similar to those of the commercial protein drink in most attributes, except sourness. The sourness was highly related with the high lactic acid content produced during fermentation. The results showed that WPC and vegetable origin lactic acid bacteria isolated from kimchi might be used for the development of a high protein fermented beverage, with improved functionality and organoleptic properties.

신형식 PSC 철도교량의 동적성능 평가 (Dynamic Performance Evaluation of New Type PSC Railroad Bridges)

  • 최상현
    • 한국재난정보학회 논문집
    • /
    • 제7권4호
    • /
    • pp.259-265
    • /
    • 2011
  • 2005년 KTX 개통이후 고속철도는 친환경적, 고효율 교통 수단으로 급부상하고 있으며, 최근 정부에서도 KTX를 중심으로 미래 교통망을 구축할 것을 계획하고 있다. 이러한 분위기에 부흥하여 건설 또는 설계중인 구조물들도 증속에 대비하고 있으며, 기존선의 경우도 개량을 계획하고 있다. 이 연구에서는 최근 개발된 중경간 PSC 거더 교량의 동적안전성 검토를 통하여 고속철도 운행에 따른 적합성을 평가하였다. 연구에 적용된 교량은 IT, Precom, WPC 거더교이며, 동등 비교를 위하여 동일한 모델링 및 해석 기법을 적용하였다. 동적성능 평가에 적용된 지표는 고유진동수, 연직 및 단부 처짐, 단부 축방향 변형, 궤도틀림 등이며, 적용된 하중은 KTX 이동하중이다. 동적해석은 최고속도 420km/hr까지 10km/hr 간격으로 증속하여 수행하였다.

Functional Properties of Yogurt Containing Specific Peptides derived from Whey Proteins

  • Won, Ji-Young;Kim, Hong-Soek;Jang, Jin-Ah;Kim, Cheol-Hyun
    • Journal of Dairy Science and Biotechnology
    • /
    • 제35권4호
    • /
    • pp.249-254
    • /
    • 2017
  • The purpose of this study was to investigate the acid tolerance, bile acid tolerance, and fermentation activity of lactic acid bacteria isolated from Kimchi in the presence of hydrolysates of whey protein concentrate. Kimchi isolates DK109, DK119, DK121, DK128, DK211, DK212, and DK215, which were identified as Lactobacillus sp., and L. casei DK128 showed the highest acid and bile acid tolerance. To produce whey hydrolysates, enzymes were added to a 10% (w/v) whey protein concentrate (WPC) solution at 1:50 (w/v, protein). The viabilities of the DK strains were determined in the presence of low pH and bile salts. Then, yogurt was produced via fermentation with L. casei DK128, an isolate from Kimchi, in the presence of the following additives: CPP, WPC, and WPC hydrolysates (WPCH) generated by alcalase (A) or neutrase (N). The produced yogurts were subjected to various analyses, including viable cell counts (CFU/mL), pH, titratable activity, and sensory testing. After 8 h of fermentation, the pH and titratable activity values of all test samples were 4.2 and 0.9, respectively. The viable counts of LAB were $3.49{\times}10^8$, $5.72{\times}10^8$, $7.01{\times}10^8$, and $6.97{\times}10^8$, for the Control, CPP, A, and N samples, respectively. These results suggest that whey proteins have potential as dietary supplements in functional foods and that WPCH could be used in yogurt as a low-cost alternative to CPP.

Effect on Viability of Microencapsulated Lactobacillus rhamnosus with the Whey Protein-pullulan Gels in Simulated Gastrointestinal Conditions and Properties of Gels

  • Zhang, Minghao;Cai, Dan;Song, Qiumei;Wang, Yu;Sun, Haiyue;Piao, Chunhong;Yu, Hansong;Liu, Junmei;Liu, Jingsheng;Wang, Yuhua
    • 한국축산식품학회지
    • /
    • 제39권3호
    • /
    • pp.459-473
    • /
    • 2019
  • Lactobacillus rhamnosus GG (LGG) has low resistance to low pH and bile salt in the gastrointestinal juice. In this study, the gel made from whey protein concentrate (WPC) and pullulan (PUL) was used as the wall material to prepare the microencapsulation for LGG protection. The gelation process was optimized and the properties of gel were also determined. The results showed the optimal gel was made from 10% WPC and 8.0% PUL at pH 7.5, which could get the best protective effect; the viable counts of LGG were 6.61 Log CFU/g after exposure to simulated gastric juice (SGJ) and 9.40 Log CFU/g to simulated intestinal juice (SIJ) for 4 h. Sodium dodecyl sulphite polyacrylamide gel electrophoresis (SDS-PAGE) confirmed that the WPC-PUL gel had low solubility in SGJ, but dissolved well in SIJ, which suggested that the gel can protect LGG under SGJ condition and release probiotics in the SIJ. Moreover, when the gel has highest hardness and water-holding capacity, the viable counts of LGG were not the best, suggesting the relationship between the protection and the properties of the gel was non-linear.

MTA와 포틀랜드 시멘트의 구성성분분석과 세포독성에 관한 연구 (Ingredients and cytotoxicity of MTA and 3 kinds of Portland cements)

  • 장석우;유현미;박동성;오태석;배광식
    • Restorative Dentistry and Endodontics
    • /
    • 제33권4호
    • /
    • pp.369-376
    • /
    • 2008
  • 이 연구의 목적은 3 종의 포틀랜드 시멘트 (포틀랜드 시멘트, 백색 포틀랜드 시멘트, 초속경 시멘트)와 white MTA의 성분 및 세포독성을 비교하는 것이다. 성분비교를 위해서 X선 회절기 (XRD), X선 형광분석기 (XRF), 유도결합플라즈마 원자방출분광 분석기 (ICP-AES)를 사용하였으며, 세포독성비교를 위해서는 우무확산법 (agar diffusion test)을 사용하였다. 분석 결과, white MTA와 백색 포틀랜드 시멘트는 포틀랜드 시멘트나 초속경 시멘트에 비해 적은 양의 마그네슘 (mg), 철 (Fe), 아연 (Zn), 그리고 망간 (Mn)을 함유하고 있었다. 또한 초속경 시멘트는 다른 시멘트 및 white MTA에 비해 많은 산화 알루미늄 ($Al_2O_3$)을 함유하고 있었다. MTA와 포틀랜드 시멘트의 주된 성분은 tricalcicium silicate ($3CaO{\cdot}SiO_2$), dicalcium Silicate ($2CaO{\cdot}SiO_2$), tricalcium aluminate ($3CaO{\cdot}Al_2O_3$), 그리고 tetracalcium aluminoferrite (4CaO{\cdot}Al_2O_3{\cdot}Fe_2O_3)등이었다 세포독성 실험결과를 Kruskal-Wallis Exact test와 Bonferroni 사후 검정법을 사용하여 분석 한 결과 white MTA와 3 종의 포틀랜드 시멘트 군 사이에서 통계적으로 유의성 있는 차이를 보이지 않았다 (p > 0.05). White MTA와 3종의 포틀랜드 시멘트의 주성분은 유사하였으나 알루미늄 (Al), 마그네슘 (mg), 철 (Fe), 아연 (Zn), 그리고 망간 (Mn) 등의 함량에서는 차이를 보였으며 이러한 차이들은 물리적 성질에 영향을 미칠 것으로 보인다.

Effects of Feed Processing Methods on Growth Performance and Ileal Digestibility of Amino Acids in Young Pigs

  • Ohh, S.H.;Han, K.N.;Chae, B.J.;Han, In K.;Acda, S.P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제15권12호
    • /
    • pp.1765-1772
    • /
    • 2002
  • Three experiments were conducted to determine the feed processing method best suited for early and conventionallyweaned pigs, and to investigate the effects of different extrusion temperatures on ileal digestibility of amino acids in diets containing different protein sources. In exp.1, a total of 108 pigs (Landrace${\times}$Yorkshire${\times}$Duroc; 24 d of age and 7.60 kg average body weight) were alloted on the basis of sex, weight and ancestry to three treatments in a randomized complete block design. Feed processing methods used were mash (M), simple pellet (SP), and expanded pellet (EP). In exp. 2, a total of 96 pigs (Landrace${\times}$Yorkshire${\times}$Duroc; 14 d of age) were allotted on the basis of sex, weight, and ancestry to three treatments in a randomized complete block design. Diets were mash (M), expanded pellet (EP), and expanded pellet crumble (EPC). In exp. 3, a study was designed to investigate the effect of different extrusion temperatures (100, 120, and $140^{\circ}C$) over the control (untreated) on the ileal digestibility of amino acids in diets containing protein sources such as spray-dried plasma protein (SDPP), whey protein concentrate (WPC), and fish meal (FM). Results in exp.1 showed that ADG, ADFI and the F/G ratio of pigs fed the SP diet were improved (p<0.05) compared with those fed the M or the EP diets, but the digestibility of nutrients was not different (p>0.05) among the treatments. In exp. 2, pigs fed expanded pellet treatments (EP or EPC) had a significantly improved (p<0.05) F/G ratio compared to the pigs fed the M diet which was primarily attributed to the significant reduction (p<0.05) in ADFI, but the overall growth rate of pigs fed expanded pellet diets was not improved. In exp. 3, there was a significant interaction effect (p<0.05) between the extrusion temperature and protein source on the ileal digestibility of amino acids. With an extrusion temperature of $100^{\circ}C$, the ileal digestibility of Lys, Val, Gly and Ser was significantly lower in the diet containing WPC compared to the diet containing SDPP. Increasing the temperature to $120^{\circ}C$ led to significant differences (p<0.05) in the digestibility of Thr and Tyr between diets containing WPC and SDPP. Regardless of extrusion temperatures, the weaned pigs' diet containing either SDPP or FM had significantly higher Lys, Phe, Thr, Val, and Gly digestibility relative to the WPC diet. Results of the present study suggest that simple pelleting of diets containing protein sources such as whey protein concentrate, spray-dried plasma protein and fish meal would be better than the extruded or expanded pellet diets. Extruder or expander processing of weaned pigs' feed could reduce palatability and ileal digestibility of several amino acids and therefore may be responsible for a negative growth response in weaned pigs.

EDS (Energy Dispersive Spectrometry)를 이용한 Mineral Trioxide Aggregate와 3종의 포틀랜드 시멘트의 성분비교에 관한 연구 (Analysis of Chemical Constitutions of MTA and 3 Portland Cements)

  • 장석우;배광식
    • 구강회복응용과학지
    • /
    • 제23권1호
    • /
    • pp.79-84
    • /
    • 2007
  • Mineral Trioxide Aggregate(MTA) has been used in Endodontic treatment successfully for more than 10 years. But the high cost of MTA limits its use in endodontics in Korea. Recently many studies have been done to compare MTA and Portland cements. To investigate the chemical constitutions of MTA (Proroot MTA, Tulsa Dental), Gray Portland cement (Lafarge Halla cement), White Portland cement(Union corp), and fast setting cement (SSangyong cement), we performed SEM(scanning electron microscope)(S4700, Hitachi) examination and EDS(Energy dispersive spectrometry)(emax, Horiba) analysis. SEM examination and EDS analysis were committed to and performed in SNU DRI (Seoul National University Dental Research Institute). We found that particles of MTA were relatively round, uniform in size, and compactly packed compared to Portland cements. Chemical constitutions of MTA, GPC, WPC and FSC were similar. It was shown that MTA contains much BiO2 . MTA and WPC showed less heavy metals such as Fe and Mg compared to GPC and FSC. FSC showed remarkably high aluminum content.

The Effects of High Pressure and Various Binders on the Physico-chemical Properties of Restructured Pork Meat

  • Hong, Geun-Pyo;Park, Sung-Hee;Kim, Jee-Yeon;Min, Sang-Gi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제19권10호
    • /
    • pp.1484-1489
    • /
    • 2006
  • This study was carried out to investigate the effect of high pressure and the addition of non-meat proteins on the physico-chemical and binding properties of restructured pork. Pressurizations were carried out at up to 200 MPa and non-meat proteins used as a binder were isolated soy protein (ISP), sodium caseinate (SC), whey protein concentrate (WPC) and egg white powder (EWP). The pH values of all treatments were affected by the level of pressure. $L^*$-value of all treatments increased significantly (p<0.05), while both $a^*$-value and $b^*$-value of all treatments showed a significant decrease (p<0.05) with increasing pressure level. Binders could contribute only additive effects on both pH and color of the treatments. It was found that high pressure improved the water binding capacities and binding strength of the treatments. Binders also improved the binding strength of restructured pork. However, SC and WPC had no effect on water binding properties under high pressure. These results indicate that the application of high pressure had more significant effect on restructuring meat than binders.

Overview of Wood Plastic Composites: Focusing on Use of Bio-based Plastics and Co-extrusion Technique

  • Kim, Birm-June
    • Journal of the Korean Wood Science and Technology
    • /
    • 제42권5호
    • /
    • pp.499-509
    • /
    • 2014
  • Wood filler is a porous and anisotropic material having different size, shape, and aspect ratio. The use of wood fillers such as wood particle, wood flour, and wood pulp in wood plastic composites (WPCs) are growing rapidly because these wood fillers give improved strength and stiffness to WPCs. However, the wood fillers have originally poor compatibility with plastic matrix affecting the mechanical properties of WPCs. Therefore, to improve compatibility between wood and plastic, numbers of physical and chemical treatments were investigated. While the various treatments led to improved performances in WPC industries using petroleum-based plastics, full biodegradation is still issues due to increased environmental concerns. Hence, bio-based plastics such as polylactide and polyhydroxybutyrate having biodegradable characteristics are being applied to WPCs, but relatively expensive prices of existing bio-based plastics prevent further uses. As conventional processing methods, extrusion, injection, and compression moldings have been used in WPC industries, but to apply WPCs to engineered or structural places, new processing methods should be developed. As one system, co-extrusion technique was introduced to WPCs and the co-extruded WPCs having core-shell structures make the extended applications of WPCs possible.