• Title/Summary/Keyword: woven fabrics

Search Result 307, Processing Time 0.026 seconds

The Extraction of Co-PET from Non-Woven Fabrics of Nylon/Co-PET Sea-island Type Composite Microfiber

  • Park, Myung-Soo;Yoon, Jong-Ho;Cho, Dae-Hyun
    • Fashion & Textile Research Journal
    • /
    • v.3 no.5
    • /
    • pp.466-472
    • /
    • 2001
  • To find a suitable condition in this process examined, we investigated the main control factors, such as, the NaOH concentrations, such as, the NaOH concentrations, the heat treating times, and the heating temperatures. The resulting mechanical properties of the fabrics also studied. The samples used were Nylon/Co-PET sea-island type composite microfiber (Co-PET content: 35%) non-woven fabric. The conclusions obtained were as follows. 1. For the complete extraction of Co-PET from the sample non-woven fabric in the dry hot air process, $160^{\circ}C$ of air temperature, 15 min. of treatment time, and around 30% of NaOH concentration were required. On the other hand, in the wet hot air process, $140^{\circ}C$ of air temperature, 3.5 min. of treatment time, and around 30% of NaOH concentration were required. 2. The mechanical properties of the continuous processed samples showed that the WT, B, and WC increased with increasing the weight reduction ratio. However, the G, decreased with increasing the weight loss ratio. Note that, particularly in B, it increased drastically when the weight deduction ratios exceeded 30%. 3. As increasing the wet hot air temperature from 130 to $140^{\circ}C$, B appeared to increase, however, WT, G, and WC appeared to decrease. 4. The best condition found in this continuous process to extract Co-PET is the wet hot air temperature of 140, NaOH concentration of 28% or above, and the treatment time 2-4 min.

  • PDF

Design of Illuminating Car Seats based on Woven Fabric of Optical Fiber

  • Song, HaYoung;Cho, Hakyung
    • Science of Emotion and Sensibility
    • /
    • v.17 no.1
    • /
    • pp.29-38
    • /
    • 2014
  • In recent days, according as ergonomics and aesthetic engineering are important factors in the product market, there is a demand to develop automobile seat and interior designs which are focused on sensitive elements such as aesthetic and comfort features in order to satisfy the sensitive needs of consumers. To meet such demands, car seats are turning into functional and sensitive products that reflect elements of function and entertainment. According to such trends, this research is aimed to develop the illuminating car seat fabric that serve such functions as recognizing and reacting to car environments, which includes sensing over-speed, open doors, and unfastened safety belts through the illuminating car seat fabrics by optical fiber. For this purpose, basic physical properties of optical fiber are analyzed, appropriate weaving and etching technologies are applied, and the woven fabric of optical fiber for car seats are illuminating depend upon car environments. Moreover, the applicable woven fabric of optical fiber is deduced after evaluating the physical properties (such as tensile strength, heatproof, anti-fouling, washable and combustible traits) for the appropriateness of applying the woven fabric of optical fiber to car seats. For this purpose, the woven fabric of optical fiber is covered according to car seat processes; the optical fiber applied to seats is composed that it may be connected to one end of the connector linked to a LED so that it may perform functions like sensing over-speed, open doors, and unfastened safety belts; the sensed signals are transmitted to the control part, and luminescent signals are transmitted to LED.

Studies on Fabrics woven with Silk/Polyester Compound Yarn (고치와 폴리에스텔 복합사 직물의 시직)

  • 김영대;김남정
    • Journal of Sericultural and Entomological Science
    • /
    • v.36 no.2
    • /
    • pp.147-151
    • /
    • 1994
  • This study was carried out investigate the characteristics of Habutae and Chiffon woven with silk and polyester(S/P) compound yarn. The S/P compound yarn could be produced by the automatic reeling machine with attachment of air jetting device, polyester yarn guider and tension control apparatus. The surface structure, tensile property and dyeing fastness of S/P compound fabric were examined for the fabric properties. Electron microscopy revealed that most part of S/P compound yarn was well interlaced and some silk part of compound yarn were hidden by polyester on an examination of surface of chiffon fabric. By the one bath and two step dyeing of disperse and acidic dyes, the colour fastness of S/P compound fabrics were 4 grade above. The tenacity and initial modulus of the finished S/P compound fabric were lower than those of grey and degummed fabrics, but reversed in elongation.

  • PDF

Physiological Responses to Different Exercise Intensities while Wearing Different Types of Sportswear Materials (스포츠웨어 착용에 따른 운동시 온열생리반응에 미치는 영향)

  • Kim, Tae-Gyou;Sung, Su-Kwang
    • Fashion & Textile Research Journal
    • /
    • v.8 no.1
    • /
    • pp.123-128
    • /
    • 2006
  • For the purpose of examining the relationship of physiological and subjective responses to different exercise intensities and varied types of sportswear material, under environmental condition $20{\pm}1^{\circ}C$ $50{\pm}3%$RH, five men who wear four different kinds of sportswear which have same clothing cover area. The subjects exercised for 20 min with a 20 min pre-exercise rest period and another 20 min post-exercise recovery period. Throughout the 60 min. duration, we monitored the local skin temperature, rectal temperature, clothing microclimate and subjective sensation. The mean skin temperature was recorded to range from $33.5{\sim}34.1^{\circ}C$ for the entire duration of the experiment with the highest temperature observed at the 7th min after starting the exercise. During the exercise intensity at THR 20, the lowest recorded temperature was at the 5th min of the recovery time and stabilized at the 10th min. However, in the exercise intensity condition at THR 70, the temperature declined steadily until the end of the experiment. With regard to clothing materials, cotton 100% and Polyester/Cotton blended fabrics knit(35/65) was $0.5{\sim}0.7^{\circ}C$ maintained lower than Polyester 100% and polyester/Cotton blended woven fabrics (65/35). In the case of the rectal temperature at THR 70 in case of PET 100%, Polyester/Cotton blended woven fabrics (35/65) was higher $0.2{\sim}0.5^{\circ}C$ than other sportswear throughout the duration of the experiment.

Flame-retarding effects depending on the number of phosphonate groups attached to phosphorus flame-retarding compounds and coating binder resins (인계 난연화합물 및 코팅 바인더 수지에 부착된 phosphonate group에 따른 난연효과)

  • Park, Hyo-Nam;Kim, Hae-Rim;Choi, Seong-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.1678-1686
    • /
    • 2021
  • In this study, we prepared phosphorous flame-retarding coating solutions by mixing triphosphate (3 phosphonate), phytic acid (6 phosphonate), or ammonium polyphosphate (10 phosphonate) with boric acid as a crosslinking agent and acryl resin binder. Prepared phosphorous flame-retarding coating solutions were coated onto non-woven fabrics, respectively, to obtain high flame-retarding effects. These prepared flame-retardant non-woven fabrics were evaluated using smoke density standard test (ASTM E662), limit oxygen index standard test (ISO E622), and vertical burning standard test (UL 94). Their flame-retarding effects were affected by the number of phosphonate groups. Regardless of natural or synthetic binder resins, their effects showed the following order: ammonium polyphosphate > phytic acid > triphosphate. Natural hydrocarbon compounds were also examined to determine the possible retardancy of binder resins. Results showed that natural hydrocarbon binder resins could be used for preparing fire-retardant nonwoven fabrics.

Effects of the Rapier Weaving Tension Characteristics on the Surface Properties of PET Fabrics (래피어 직기 장력특성이 PET 직물의 표면특성에 미치는 영향)

  • Kim, Seung-Jin;Park, Kyung-Soon
    • Fashion & Textile Research Journal
    • /
    • v.7 no.6
    • /
    • pp.673-679
    • /
    • 2005
  • This study surveys the fabric surface properties such as mean value of the coefficient of friction(MIU), mean deviation of the coefficient of friction(MMD) and mean deviation of surface roughness(SMD) due to warp and weft tension differences using KES-FB system. For this purpose, fabric is designed as 5 harness Satin weave using 150d/48f warp and 200d/384f weft polyester filaments, and is woven by Omega$^{(R)}$ rapier loom by Textec Co.Ltd and Vamatex-P1001ES$^{(R)}$ rapier loom by Vamatex Co.Ltd respectively. These grey fabrics are processed on the same dyeing and finishing processes. The fabric surface properties according to the weaving looms are analysed with warp and weft weaving tensions. And also surveyed the difference of fabric surface properties according to the fabric positions such as center and each edge of fabrics for the sensitive garment. Fabric thickness was also measured and discussed according to the fabric positions such as center and each of fabrics with two looms weaving tensons.

Performance of Poly(trimethylene terephthalate) Fabric for Swimsuit (폴리트리메틸렌테레프탈레이트를 사용한 수영복 소재의 성능)

  • 정승은;박정희;최정화
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.28 no.6
    • /
    • pp.819-829
    • /
    • 2004
  • This study was carried out to suggest a new swimsuit fabric with improved durability, comfort and appearance, by employing PTT(polytrimethylene terephthalate). Objective and subjective performances of newly woven PTT/PU (polyurethane) blend fabric were estimated and compared with nylon/PU(80/20) which is currently used for swimsuit. According to the questionnaire, the most serious problems of swimsuit fabrics were such that they were easily degraded by chlorinated water and this made fabric inelastic and transparent. After exposure to the chlorinated water, PTT blend fabrics showed higher retention of breaking strength, bursting strength, elastic recovery and crystallinity. suggesting that PTT/PU(87/13) was the most excellent material in durability. PTT blend fabrics absorbed less water and dried faster than nylon/PU and thus PTT/PU(87/13) was shown to be the best in respect of comfort. All of the specimens used in this study exhibited satisfactory colorfastness to sea water, chlorinated water and light except that nylon/PU(80/20) represented weak colorfastness to chlorinated water. From the subjective wearing sensation test, PTT/PU(82/18) was shown to posess the best wearing sensation. From the overall evaluation or objective and subjective properties, PTT blend fabrics exhibited superior performances to nylon/PU(80/20), suggesting that they can be successfully used as a new durable and comfortable swimsuit fabric.

A Study on the Initial Maximum Value of Heat Flux, $q_{max}$ of Wool Fabrics (Part II) - The correlation between $q_{max}$ and chracteristic values - (양모 복지의 초기열류속최대치($q_{max}$)에 관한 연구(II) -직물 표면 형태 인자와의 상관성을 중심으로 -)

  • Choi Suk Chul;Jung Jin Soun;Chun Tae il
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.15 no.4 s.40
    • /
    • pp.373-380
    • /
    • 1991
  • In the previous paper, we already discussed about the factor effected upon the initial maximum value of heat flux ($q_{max}$). Thermal conductivity, thermal transmittance and surface air cavity of wool fabrics were examind and their correlation to the $q_{max}$ was also studied In this study, the other factor was examined which had on effect upon the qmaf of an objective measure of warm/cool feeling. It was studied that the qmax correlated to the surface sturucture parameters (compression, friction, smoothness, roughness, thickness and weight). It was concerned to the degree of warm/cool feeling when we touched hand on fabrics. We selected twenty sorts of pure wool woven fabrics for men's fall-winter cloth (all Wool). The conclusions are as follow; 1. There was a good correlation between the $q_{max}$ and the compression property. 2. The surface structure parameters, smoothness and roughness, made various effects on the $q_{max}$, when the samples touched on a thin copper plate. So, there was not a certain correla-tion to the $q_{max}$.

  • PDF

Evaluation of Seam Puckering and Seam Strength for Conductive Threads (전도성사의 심 퍼커와 봉합강도 평가)

  • Lee, Hyojeong;Park, Sunhee;Lee, Yejin
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.45 no.1
    • /
    • pp.46-55
    • /
    • 2021
  • Seam puckering and the seam strength of conductive threads used to produce smart clothing were analyzed according to stitching methods and fabrics. Samples were prepared in a lock stitch and zigzag stitch on plain woven and jersey knit fabric, using one type of polyester sewing thread and three types of commercial conductive threads that consisted of two types of stainless-steel conductive threads (TST and MST) and one type of silver conductive thread (SSV). Seam pucker percentages, shapes, and seam strength were measured. On plain woven fabric as well as jersey knit fabric, three-ply TST and MST showed a higher SP percentage compared to a polyester sewing thread. Meanwhile, single-ply SSV showed the lowest SP percentage. In addition, the SP percentage of the zigzag stitch decreased along the weft and course directions of the fabric, and decreased significantly as the number of fabric layers increased. Moreover, there was a marked tendency for a higher SP percentage in jersey knit fabric compared to plain woven fabric, and the two-dimensional cross-section waveforms of stitches obtained using three-dimensional data that showed increased irregular waveforms and peaks in the zigzag stitch. There were no correlations between seam strength and tensile strength.

Development of High-strength Cotton Fabrics for Upper of Shoes to Improve Fashionability (패션성 향상을 위한 신발갑피용 고강도 면직물 개발)

  • Lee, Jae-Ho
    • Fashion & Textile Research Journal
    • /
    • v.21 no.2
    • /
    • pp.203-208
    • /
    • 2019
  • This paper considers the moisture permeability and fashion in the upper fabrics of cotton fabric shoes woven into various tissues and properties measured to examine the use as upper fabrics. We measured the tissues of the manufactured upper fabric are 1/3 twill, $4{\times}4$ weft rib, Maya, Triple, Deformed twill design (DTD), Diamond tissues and tear strength, tensile strength, breaking elongation, stretching under load at 100N, stitch tear resistance, and fastness. In the case of $4{\times}4$ weft rib, the tear strength and tensile strength were excellent; however, the elongation and stitch tear resistance at 100N load were less than the standard value. DTD fabrics are characterized by physical properties in the warp direction that are superior to those in the weft direction; however, the tear strength and tensile strength in the weft direction are less than the standard value. The 1/3 twill fabrics showed high tensile strength value and stitch tear resistance value in the warp direction; however, toughness, the main property of the shoe upper, was below the standard value. Triple and diamond fabrics, which have a significant effect on the performance of the shoe upper fabric, also had less than the standard value of tear strength. Maya upper fabric for shoes has better properties than other upper fabrics except for the elongation at break, and the stitch tear resistance has a value of 178% in the warp direction and 214% in the weft direction compared to the standard value. Therefore, the Maya fabric showed the possibility of being used as an upper textile for shoes.