• Title/Summary/Keyword: world of difference

Search Result 883, Processing Time 0.027 seconds

Anti-corrosion impact of green synthesis of Silica nanoparticles for the sports structures in physical exercise activities

  • Zhixin Zhang;Zhiqiang Cai;Khidhair Jasim Mohammed;H. Elhosiny Ali
    • Advances in concrete construction
    • /
    • v.15 no.1
    • /
    • pp.41-46
    • /
    • 2023
  • Sport has no age limit and can be done anywhere and in any condition with minimal equipment. The existence of sports spaces in all parts of the world is considered a citizen's right. One of the activities carried out in this field is installing sports equipment and structures in parks and encouraging citizens to use this equipment for physical health with the least cost and facilities. Installing sports structures in open spaces such as parks is a practical step for developing citizens' sports. Although using devices in parks is acceptable, it is more critical to meet scientific and technical standards. The components of these structures must have high strength and endurance against changes in environmental conditions such as humidity, temperature difference, and corrosion. Among the various causes of material degradation, corrosion has always been one of several fundamental causes of metal equipment failure. Sports structures in open spaces are not safe from corrosion. Uniform corrosion is the most common type of corrosion. This corrosion usually occurs uniformly through a chemical or electrochemical reaction across the surface exposed to the corrosive environment. Rust and corrosion of outdoor sports structures are examples of this corrosion. For this reason, in this research, with the green synthesis of silica nanoparticles and its application in outdoor sports structures, the life span of these structures can be increased for the use of physical exercises as well as their quality.

Molecular Identification and Fine Mapping of a Major Quantitative Trait Locus, OsGPq3 for Seed Low-Temperature Germinability in Rice

  • Nari Kim;Rahmatullah Jan;Jae-Ryoung Park;Saleem Asif;Kyung-Min Kim
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.283-283
    • /
    • 2022
  • Abiotic stresses such as high/low temperature, drought, salinity, and submergence directly or indirectly influence the physiological status and molecular mechanisms of rice which badly affect yield. Especially, the low temperature causes harmful influences in the overall process of rice growth such as uneven germination and the establishment of seedlings, which has become one of the main limiting factors affecting rice production in the world. It is of great significance to find the candidate genes controlling low-temperature tolerance during seed germination and study their functions for breeding new rice cultivars with immense low-temperature tolerance during seed germination. In this study, 120 lines of Cheongcheong/Nagdong double haploid population were used for quantitative trait locus analysis of low-temperature germinability. The results showed significant difference in germination under low different temperature conditions. In total, 4 QTLs were detected on chromosome 3, 6, and 8. A total of 41 genes were identified from all the 4 QTLs, among them, 25 genes were selected by gene function annotation and further screened through quantitative real time polymerase chain reaction. Based on gene function annotation and level of expression under low-temperature, our study suggested OsGPq3 gene as a candidate gene controlling viviparous germination, ABA and GA signaling under low-temperature. This study will provide a theoretical basis for marker-assisted breeding.

  • PDF

New fuzzy method in choosing Ground Motion Prediction Equation (GMPE) in probabilistic seismic hazard analysis

  • Mahmoudi, Mostafa;Shayanfar, MohsenAli;Barkhordari, Mohammad Ali;Jahani, Ehsan
    • Earthquakes and Structures
    • /
    • v.10 no.2
    • /
    • pp.389-408
    • /
    • 2016
  • Recently, seismic hazard analysis has become a very significant issue. New systems and available data have been also developed that could help scientists to explain the earthquakes phenomena and its physics. Scientists have begun to accept the role of uncertainty in earthquake issues and seismic hazard analysis. However, handling the existing uncertainty is still an important problem and lack of data causes difficulties in precisely quantifying uncertainty. Ground Motion Prediction Equation (GMPE) values are usually obtained in a statistical method: regression analysis. Each of these GMPEs uses the preliminary data of the selected earthquake. In this paper, a new fuzzy method was proposed to select suitable GMPE at every intensity (earthquake magnitude) and distance (site distance to fault) according to preliminary data aggregation in their area using ${\alpha}$ cut. The results showed that the use of this method as a GMPE could make a significant difference in probabilistic seismic hazard analysis (PSHA) results instead of selecting one equation or using logic tree. Also, a practical example of this new method was described in Iran as one of the world's earthquake-prone areas.

Investigation and Removal Method of Efflorescence Phenomenon of Traditional Bricks - Focusing on the Efflorescence of Hwaseong Fortress in Suwon - (전(塼)의 백화현상 규명 및 제거방안 연구 - 수원화성 백화현상을 중심으로 -)

  • Chung, Kwang-Yong;Cha, Hyun-Seok
    • Journal of architectural history
    • /
    • v.22 no.6
    • /
    • pp.59-66
    • /
    • 2013
  • This study progressed an investigation on the cause of the efflorescence phenomenon of bricks in Suwon Hwaseong Fortress, which is designated as a UNESCO World Heritage by using diverse scientific analyses. The samples were taken in Hwaseong and analyzed using XRD and SEM-EDS for the material identification of efflorescence. We observed under a polarizing microscope and measured absorption factors for the basic investigation for traditional bricks. As a result of material identification, soluble salt($Na_2SO_4$, $KNO_3$) and insoluble salt($CaCO_3$) were detected. There was no big difference between original bricks and repaired bricks under the polarizing microscope. However, in terms of the water absorption rate, bricks which were used for repair nowadays showed low water absorption rate(1%). In conclusion, soluble salt and insoluble salt appeared due to an effect of an air pollution and joint mortar. Soluble salt was removed in the rainy season, but insoluble salt was not removed. As a result of the efficiency and safety tests for chemicals removing efflorescence, chemical E is likely to be the suitable chemicals for the efflorescence phenomenon of traditional bricks in Suwon Hwaseong Fortress. In the future, consideration whether the use of lime is available or not should be studied through comprehensive researches including repair work, construction work and the environment factor with lime. Also, physical, chemical identifications of repairing bricks will be required.

Eggs and Cholesterol Controversy

  • Sim, Jeong-S.
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.15 no.3
    • /
    • pp.306-312
    • /
    • 1986
  • Demonstration of the highly positive correlation between blood cholestrol levels and heart disease has made consumers wary of the fats in meat, milk and eggs. The egg, as perhaps the single largest common source of cholesterol, has been cited by many members of the medical and scientific world as a food contributing to heart disease. In light of decreasing per capita egg consumption and continuing dietary egg cholesterol controversy, many researchers have focused their efforts on egg nutrition. The results reported, however, are often contradictory. In spite of the disputable scientific evidence, the egg has been labelled (erroneously) as a highly cholesterogenic food. The objective of this presentation is to present a general picture of the problem and discuss our laboratory findings relevant to the problem. An isotope technique was utilized to incorporate $^{14}C$-cholesterol into egg yolk lipoproteins and study the metabolic fate of dietary ovo-cholesterol in rats. Two hundred and fifty micro-curies of 4-$^{14}C$-cholesterol, emulsified in corn oil, were orally administered to five Single Comb White Leghorn laying hens. Eggs were collected, hard-boiled, and the hot dried egg yolk powder (HEY) was prepared. Total radioactivity excreted via feces was determined. The rat groups fed egg yolk powder excreted more than 95% of the ingested ovo-cholesterol, whereas the rat chow group excreted only 47%. No difference was observed between HEY and CEY treatments. Therefore, an unknown lipid factor present in egg folk accelerates cholesterol turnover rate and excretion via feces.

  • PDF

Seismic performance of reinforced engineered cementitious composite shear walls

  • Li, Mo;Luu, Hieu C.;Wu, Chang;Mo, Y.L.;Hsu, Thomas T.C.
    • Earthquakes and Structures
    • /
    • v.7 no.5
    • /
    • pp.691-704
    • /
    • 2014
  • Reinforced concrete (RC) shear walls are commonly used for building structures to resist seismic loading. While the RC shear walls can have a high load-carrying capacity, they tend to fail in a brittle mode under shear, accompanied by forming large diagonal cracks and bond splitting between concrete and steel reinforcement. Improving seismic performance of shear walls has remained a challenge for researchers all over the world. Engineered Cementitious Composite (ECC), featuring incredible ductility under tension, can be a promising material to replace concrete in shear walls with improved performance. Currently, the application of ECC to large structures is limited due to the lack of the proper constitutive models especially under shear. In this paper, a new Cyclic Softening Membrane Model for reinforced ECC is proposed. The model was built upon the Cyclic Softening Membrane Model for reinforced concrete by (Hsu and Mo 2010). The model was then implemented in the OpenSees program to perform analysis on several cases of shear walls under seismic loading. The seismic response of reinforced ECC compared with RC shear walls under monotonic and cyclic loading, their difference in pinching effect and energy dissipation capacity were studied. The modeling results revealed that reinforced ECC shear walls can have superior seismic performance to traditional RC shear walls.

Camera Calibration And Lens of Distortion Model Constitution for Using Artificial Neural Networks (신경망을 이용한 렌즈의 왜곡모델 구성 및 카메라 보정)

  • Kim, Min-Suk;Nam, Chang-Woo;Woo, Dong-Min
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.2923-2925
    • /
    • 1999
  • The objective of camera calibration is to determine the internal optical characteristics of camera and 3D position and orientation of camera with respect to the real world. Calibration procedure applicable to general purpose cameras and lenses. The general method to revise the accuracy rate of calibration is using mathematical distortion of lens. The effective og calibration show big difference in proportion to distortion of camera lens. In this paper, we propose the method which calibration distortion model by using neural network. The neural network model implicity contains all the distortion model. We can predict the high accuracy of calibration method proposed in this paper. Neural network can set properly the distortion model which has difficulty to estimate exactly in general method. The performance of the proposed neural network approach is compared with the well-known Tsai's two stage method in terms of calibration errors. The results show that the proposed approach gives much more stable and acceptabke calibration error over Tsai's two stage method regardless of camera resolution and camera angle.

  • PDF

A Study on the Abilities and Characteristics of the Systems Thinking for Pre-service Elementary Teachers (예비초등교사들의 시스템사고 능력 및 특성에 대한 연구)

  • Moon, Byoung-Chan;Kim, Hai-Gyoung
    • Korean System Dynamics Review
    • /
    • v.8 no.2
    • /
    • pp.235-252
    • /
    • 2007
  • This study focused on the analysis of the abilities and characteristics of the systems thinking for pre-service elementary teachers. Systems thinking is defined as the ability to see the world as a complex system in which one understands that everything is connected to everything else. For this study, 345 subjects carrying of the 2nd grade were selected and participated in making out the protocol developed by Sweeney and Sterman(2000) for the estimating ability of the systems thinking. As a result, the proportion of the correct answers based on the total points of view was 63%. However, the proportion of correct answer was considerably different according to the gender. The women group showed 53%, while the men group was 76%. Especially, there was a great difference in the rates of correct answer depending on their academic tracks of the humanities or natural science courses in the high school. The average rates of the correct answers for the natural science and the human science were 84 and 46%, respectively. Consequently, the ability of the systems thinking for pre-service elementary teachers is highly related with their gender and learning experience in the high school. The results of this study may contribute the practical use of the systems thinking in the area of the science education.

  • PDF

A Study of the FE Analysis Technique of Hybrid Blades for Large Scale Wind-Turbine (대형 풍력발전기용 하이브리드형 블레이드 구조해석)

  • Kang, Byong-Yun;Kim, Yun-Hae;Kim, Do-Wan;Kim, Myung-Hun;Han, Jeong-Young;Hong, Cheol-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.61-66
    • /
    • 2011
  • According to recent figures, 35% of the world's blades are made using prepreg blades, by Vestas and Gamesa. They are the most advanced in the market today. In this study, we investigated the validity of the finite element method (FEM) applied to an FE analysis of a hybrid composite wind-turbine blade. Two methods were suggested for a composite FE analysis: using the equivalent properties of the composite or using stacking properties. FE analysis results using the stacking properties of the composite were in good agreement with results of using the equivalent properties. The difference between FE results was approximately 0.6~13.3%.

Understanding the Degradative Effects of Different Climatological Conditions on Architectural Coatings: Progress Report on Korea Institute of Construction Materials Site Comparison Study of Seosan (Korea) Outdoor Exposure Testing Facility

  • Choi, Yoon;Pyo, Soonjin;Seo, Junsik;Yang, Inmo;Kim, Seungjin;Kim, Sangmyoung
    • Corrosion Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.116-118
    • /
    • 2009
  • Korea Institute of Construction Materials founded Seosan Outdoor Exposure Test Site 2005 at Korea, which is a part of Worldwide Exposure Network (WEN). To evaluate the test site along with other exposure test sites, three different types of paints have been under real time weathering conditions at three major weathering test facilities around the world. Using these test specimens several spectroscopic experiments along with physical tests have been performed. Also acceleration tests have been performed using the same paints. The correlation of weathered paints among three different test facilities and accelerated test results has been compared. From the results the reliability of Seosan Weathering Test Facility and reasonable life time prediction tests are discussed.