• Title/Summary/Keyword: workspace

Search Result 478, Processing Time 0.026 seconds

Analysis of Parallel Mechanisms with Forward Position Closed-Form Solution with Application to Hybrid Manipulator (정위치 해석해를 가지는 병렬 메카니즘에 관한 분석과 혼합구조 매니퓰레이터로의 활용)

  • 김희국;이병주
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.3
    • /
    • pp.324-337
    • /
    • 1999
  • In this work, a new 3-PSP type spatial 3-degree-of-freedom parallel mechanism is proposed. And a 6 DOF hybrid manipulator which consists of a 3-PPR type planar 3 DOF parallel mechanism and a new 3-PSP type spatial 3-degree-of-freedom parallel mechanism is proposed. Both 3 DOF mechanism modules have closed-form forward position solutions and particularly, 3-PSP spatial module has unique forward position solution. Firstly, the closed-form position analysis and first-order kinematic analysis for the proposed 3-PSP type module are carried out, and the first-order kinematic characteristics are examined via maximum singular value and the isotropic index of the mechanism. It is shown through these analyses that the mechanism has excellent isotrpic property throughout the workspace. Secondly, position and kinematic analysis of the 3-PPR planar module are briefly described. Thirdly, the forward position analysis for the 3-PPR 3-PSP type 6 degree-of-freedom hybrid mechanism consisting of a 3-PPR planar module and a 3-PSP spatial module is performed along with the analysis of the workspace size and first-order kinematic characteristics. The kinematic characteristics of the proposed hybrid manipulator are compared to those of geometrically similar Stewart manipulator.

  • PDF

Workspace Visibility Graph Analysis (VGA) for Concentration Privacy and Group Relations in the Open-Plan Office Environment

  • Hong, Yeon-Koo;Yoo, Uoo-Sang
    • Architectural research
    • /
    • v.12 no.1
    • /
    • pp.9-14
    • /
    • 2010
  • The present study explored the applicability of Visibility Graph Analysis (VGA) techniques to workplace design research. Six types of VGA measures in Depthmap encompassing visual connectivity, three types of visual integration, mean depth, and visual entropy were employed for the analysis of individual privacy for task concentration and group relationship behavior in the open-plan office environment. Data comprised 136 workers in 6 open-plan offices filled with low-paneled (1.2-1.5m) cubicle workspaces. For the statistical analysis, Spearman's rho correlations and t-tests were applied for the spatial and behavioral measures. The results showed that workspace VGA measures have a potential to be useful information to account for workers' concentration privacy and, limitedly, also informal relationships with team members. Visual entropy values especially offer reliable information to predict various aspects of office workers' privacy behavior while visual integration can be used to account for the workers' sense of trust in group relations. The study also discussed the limitation of VGA applications to the workplace context.

Implementation of a New Parallel Spherical 3-Degree-of-Freedom Mechanism With Excellent Kinematic Characteristics (우수한 기구학 특성을 가지는 새로운 병렬형 구형 3자유도 메커니즘의 구현)

  • 이석희;김희국;오세민;이병주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.299-303
    • /
    • 2004
  • In our pervious paper, a new parallel-type spherical 3-degree-of-freedom mechanism consisting of a two-degree-of-freedom parallel module and a serial RRR subchain was proposed[1]. In this paper, its improved version is suggested and implemented. Differently from the previous 3-dof spherical mechanism, gear chains are incorporated into the current version of the mechanism to drive the distal revolute joint of the serial subchain from the base of the mechanism and in fact, the modification significantly improves kinematic characteristics of the mechanism within its workspace. Firstly, after a brief description on its structure, the closed-form solutions of both the forward and the reverse position analysis are derived. Secondly, the first-order kinematic model of the mechanism for the inputs which are assumed to be located at the base is derived. Thirdly, through the simulations of the kinematic analysis via. kinematic isotropic index, it is confirmed that the mechanism has much more improved isotropic properties throughout the workspace of the mechanism than the previous mechanism in [1]. Lastly, the proposed mechanism is implemented to verify the results from this analysis.

  • PDF

The Study of Kinematic Analysis and Control by Optimum Design of Redundantly Actuated Parallel Robot (여유구동형 병렬 로봇의 최적설계를 통한 기구학적 분석 및 제어에 관한 연구)

  • Kim, Byeong-Soo;Lee, Jeh-Won;Kim, Young-Suk;Kim, Jin-Dae;Lee, Hyuk-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.4
    • /
    • pp.426-432
    • /
    • 2012
  • In this study, kinematic analysis of forward kinematic, inverse kinematic and jacobian for 6-bar parallel robot was analyzed. In order to analyze the maximum workspace of 6-bar parallel robot, maximum revolution range of active joint was calculated. Also, to analyze forward dynamics and inverse dynamics of 6-bar parallel robot, recurdyn and simmechanics was utilized. Using a PI controller and Feedforward controller make an experiment with square motion of end_effector. The reference value of active joint and trace of end_effector were compared with actual experimental value.

Position estimation and navigation control of mobile robot using mono vision (단일 카메라를 이용한 이동 로봇의 위치 추정과 주행 제어)

  • Lee, Ki-Chul;Lee, Sung-Ryul;Park, Min-Yong;Kim, Hyun-Tai;Kho, Jae-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.5
    • /
    • pp.529-539
    • /
    • 1999
  • This paper suggests a new image analysis method and indoor navigation control algorithm of mobile robots using a mono vision system. In order to reduce the positional uncertainty which is generated as the robot travels around the workspace, we propose a new visual landmark recognition algorithm with 2-D graph world model which describes the workspace as only a rough plane figure. The suggested algorithm is implemented to our mobile robot and experimented in a real corridor using extended Kalman filter. The validity and performance of the proposed algorithm was verified by showing that the trajectory deviation error was maintained under 0.075m and the position estimation error was sustained under 0.05m in the resultant trajectory of the navigation.

  • PDF

Design of a New Haptic Device using a Parallel Mechanism with a Gimbal Mechanism

  • Lee, Sung-Uk;Shin, Ho-Chul;Kim, Seung-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2331-2336
    • /
    • 2005
  • This paper proposes a new haptic device using a parallel mechanism with gimbal type actuators. This device has three legs actuated by 2-DOF gimbal mechanisms, which make the device simple and light by fixing all the actuators to the base. Three extra sensors are placed at passive joints to obtain a unique solution of the forward kinematics problem. The proposed haptic device is developed for an operator to use it on a desktop in due consideration of the size of an average Korean. The proposed haptic device has a small workspace for on operator to use it on a desktop and more sensitivity than a serial type haptic device. Therefore, the motors of the proposed haptic device are fixed at the base plate so that the proposed haptic device has a better dynamic bandwidth due to a low moving inertia. With this conceptual design, optimization of the design parameters is carried out. The objective function is defined by the fuzzy minimum of the global design indices, global force/moment isotropy index, global force/moment payload index, and workspace. Each global index is calculated by a SVD (singular value decomposition) of the force and moment parts of the jacobian matrix. Division of the jacobian matrix assures a consistency of the units in the matrix. Due to the nonlinearity of this objective function, Genetic algorithms are adopted for a global optimization.

  • PDF

Improvement of Washout Algorithm for Vehicle Driving Simulator Using Vehicle Tilt Data and Its Evaluation (차량 기울기값을 이용한 차량 시a레이터용 워시아웃 알고리즘에 대한 개선 및 평가)

  • Moon, Young-Geun;Kim, Moon-Sik;Kim, Kyung-Dal;Lee, Min-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.8
    • /
    • pp.823-830
    • /
    • 2009
  • For developing automotive parts and telematics devices the real car test often shows limitation because it needs high cost, much time and has the possibility of the accident. Therefore, a Vehicle Driving Simulator (VDS) instead of the real-car test has been used by some automotive manufactures, research centers, and universities. The VDS is a virtual reality device which makes a human being feel as if one drives a vehicle actually. Unlike actual vehicle, the simulator has limited kinematic workspace and bounded dynamic characteristics. So it is difficult to simulate dynamic motions of a multi-body vehicle model fully. In order to overcome these problems, a washout algorithm which restricts workspace of the simulator within the kinematic limits is needed, and analysis of dynamic characteristics is required also. However, a classical washout algorithm contains several problems such as time delay and generation of wrong motion signal caused by characteristics of filters. Specially, the classical washout algorithm has the simulator sickness when driver hardly turns brakes and accelerates the VDS. In this paper, a new washout algorithm is developed to enhance the motion sensitivity and improve the simulator sickness by using the vehicle tilt signal which is generated in the real time vehicle dynamic model.

Force Manipulability Analysis of Multi-Legged Walking Robot (다족 보행로봇의 동적 조작성 해석)

  • 조복기;이지홍
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.4
    • /
    • pp.350-356
    • /
    • 2004
  • This paper presents a farce manipulability analysis of multi-legged walking robots, which calculates force or acceleration workspace attainable from joint torque limits of each leg. Based on the observation that the kinematic structure of the multi-legged walking robots is basically the same as that of multiple cooperating robots, we derive the proposed method of analyzing the force manipulability of walking robot. The force acting on the object in multiple cooperating robot systems is taken as reaction force from ground to each robot foot in multi-legged walking robots, which is converted to the force of the body of walking robot by the nature of the reaction force. Note that each joint torque in multiple cooperating robot systems is transformed to the workspace of force or acceleration of the object manipulated by the robots in task space through the Jacobian matrix and grasp matrix. Assuming the torque limits are given in infinite norm-sense, the resultant dynamic manipulability is derived as a polytope. The validity of proposed method is verified by several examples, and the proposed method is believed to be useful for the optimal posture planning and gait planning of walking robots.

The Modified Two-axis Vector Controller of Linear Induction Motor to Apply to the Non-contact Stage with Large Workspace (대면적 비접촉 스테이지에 구동기 적용을 위한 선형유도기의 변형된 2축 벡터 제어기)

  • Jung, Kwang-Suk;Lee, Sang-Heon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.4
    • /
    • pp.385-391
    • /
    • 2008
  • To effectively cope with a complexity of kinematic metrology due to workspace enlargement of the planar stage, the linear induction motor is suggested as its new driving source. Especially, the linear induction motor under uniform plate type of secondary doesn't inherently have a periodical force ripple which is generally shown in the brushless DC motor. But, it presents a poor transient characteristic at zero or low speed zone owing to time delay of flux settling, resulting in slow response. To improve the servo property of linear induction motor and apply successfully it to the precision stage, this paper discusses a modified vector control methodology. The controller has a novel input form, fixed d-axis current, q-axis current and forward-fed DC current, to control thrust force and normal force of the linear induction motor independently. Influence of the newly introduced input and the feasibility of controller are validated experimentally.

Development of Iso-Perception Maps to Improve the Driver Workspace Using Drivers' Static Behaviors (운전자 정적 거동 특성을 이용한 차량 패키지 개선용 등가 인지지도 개발)

  • Ahn, Sung-Yong;Kim, Han-Woong;Han, Mi-Ran;Park, Peom;Kyung, Gyou-Hyung
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.1
    • /
    • pp.33-37
    • /
    • 2010
  • This study was aimed at developing 1) iso-perception maps for various groups of drivers in terms of age, gender, and anthropometry and 2) the experiment framework required for obtaining subjective and objective measures. A total of 9 maps, which describe drivers' perceptions regarding their static behaviors inside a typical mid-size sedan, can be used to improve the utilization of the limited driver workspace, and to select better design alternatives for occupant packaging. An adjustable seating buck, $a^{***}$-camera motion capture system (Vicon), and $a^{**}$-channel EMG system were used for the experiment. Each iso-perception map was developed while H-PT, steering wheel center, or TGS knob center was moved to each of pre-defined positions relative to driver-selected positions. Adjustable ranges or positions of the seat, steering wheel, and TGS lever described in iso-perception maps can be used to determine better package layout alternatives.