• Title/Summary/Keyword: workspace

Search Result 478, Processing Time 0.024 seconds

Mobile Haptic Interface for Large Immersive Virtual Environments: PoMHI v0.5 (대형 가상환경을 위한 이동형 햅틱 인터페이스: PoMHI v0.5)

  • Lee, Chae-Hyun;Hong, Min-Sik;Lee, In;Choi, Oh-Kyu;Han, Kyung-Lyong;Kim, Yoo-Yeon;Choi, Seung-Moon;Lee, Jin-Soo
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.2
    • /
    • pp.137-145
    • /
    • 2008
  • We present the initial results of on-going research for building a novel Mobile Haptic Interface (MHI) that can provide an unlimited haptic workspace in large immersive virtual environments. When a user explores a large virtual environment, the MHI can sense the position and orientation of the user, place itself to an appropriate configuration, and deliver force feedback, thereby enabling a virtually limitless workspace. Our MHI (PoMHI v0.5) features with omnidirectional mobility, a collision-free motion planning algorithm, and force feedback for general environment models. We also provide experimental results that show the fidelity of our mobile haptic interface.

  • PDF

A Design of JCM(Joint Constraint Map) for the Collision Avoidance of Two Robots (두 로보트의 충돌 회피를 위한 조인트 제한 지도(JCM) 의 구성)

  • Nam, Yun-Seok;Lee, Bum-Hee;Ko, Myoung-Sam
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.945-949
    • /
    • 1988
  • In this paper, collision avoidance of two robots working in a common workspace is described. The workspace for a two robot system is defined and classified. JCM (Joint Constraint Map) is designed which shows the region of joint values that must be avoided for collision free motion, and application of the JCM is studied.

  • PDF

On the design of a stewart platform-based universal hand-controller (스튜어트 플랫폼형 범용 수동조작기의 설계연구)

  • 김상범;최용제
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.150-160
    • /
    • 1995
  • The practical design and construction of a Stewart Platform-based unilateral universal hand-controller is presented. It is also presented that such a design concept could be implemented by developing a technical method of determining the forward kinematics of a Stewart Platform in real time. In this work, the forward kinematics of a Stewart Platform has been determined in real time using three additional displacement sensors which eliminate the computational burden of solving the forward kinematics described in nonlinear simultaneous equations. The workspace of the Stewart Platform via inverse kinematics has been analyzed numerically and used as a design guide for the determination of the mechanism dimensions such as the sizes of the upper and base platforms and the minimum and maximum lengths of the legs. The hardware of the hand-controller has been constructed and tested to demonstrate the feasibility of the design concept.

Cooperative Localization in 2D for Multiple Mobile Robots by Optimal Fusion of Odometer and Inexpensive GPS data (다중 이동 로봇의 주행 계와 저가 GPS 데이터의 최적 융합을 통한 2차원 공간에서의 위치 추정)

  • Jo, Kyoung-Hwan;Lee, Ji-Hong;Jang, Choul-Soo
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.3
    • /
    • pp.255-261
    • /
    • 2007
  • We propose a optimal fusion method for localization of multiple robots utilizing correlation between GPS on each robot in common workspace. Each mobile robot in group collects position data from each odometer and GPS receiver and shares the position data with other robots. Then each robot utilizes position data of other robot for obtaining more precise estimation of own position. Because GPS data errors in common workspace have a close correlation, they contribute to improve localization accuracy of all robots in group. In this paper, we simulate proposed optimal fusion method of odometer and GPS through virtual robots and position data.

  • PDF

A New 6-DOF Parallel Haptic Device: Optimum Design and Analysis (새로운6자유도 병렬형 햅틱 기구의 최적설계 및 해석)

  • 이재훈;김형욱;이병주;서일홍
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.1
    • /
    • pp.63-72
    • /
    • 2003
  • A new 6-DOF parallel haptic device is proposed. Many existing haptic devices require large power due to having floating actuator and also have small workspaces. The proposed new mechanism can generate 6-DOF reflecting force. This device is relatively light by employing non-floating actuators and has large workspace. Kinematic analysis and kinematic optimal design is performed for this mechanism. Dexterous workspace, global isotropic index, and global maximum force transmission ratio are considered as kinematic design indices. To deal with such multi-criteria optimization problem. composite design index is employed. For the given operational specifications, actuator sizing for this mechanism is also carried out.

Behavior Planning for Humanoid Robot Using Behavior Primitive (행동 프리미티브 기반 휴머노이드 로봇의 행동 계획)

  • Noh, Su-Hee;Kim, Yong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.1
    • /
    • pp.108-114
    • /
    • 2009
  • In this paper, we presents a behavior planning for humanoid robots using behavior primitive in 3 dimensional workspace. Also, we define behavior primitives that humanoid robot accomplishes various tasks effectively. Humanoid robot obtains information of the outside environment and its inner information from various sensors in complex workspace with various obstacles. We verify our approach on a developed small humanoid robot using embedded vision and sensor system in a experimental environment. The experimental results show that the humanoid robot performs its tasks fast and effectively.

The Optimum Design of a Spatial 3-DOF Manipulator Using Axiomatic Design (공리적 설계를 이용한 공간형 3자유도 기구의 최적설계)

  • Han Seog Young;Yi Byung-Ju;Kim Seon Jung;Kim Jong O;Chung Goo Bong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.6
    • /
    • pp.52-60
    • /
    • 2005
  • Ultra-precision positioning systems basically require high natural frequency and sufficient workspace. To cope with this requirement, flexure hinge mechanisms have been developed. However, previous designs are difficult to satisfy the functional requirements of the system due to difficulty in modeling and optimization process applying fur the independent axiomatic design. Therefore, this paper suggests a new design and design procedure based on semi-coupled, axiomatic design. A spatial 3-DOF parallel type micro mechanism is chosen aa an exemplary device. Based on preliminary kinematic analysis and dynamic modeling of the system, an optimum design is conducted. To check the effectiveness of the optimal parameters obtained by theoretical approach, simulation has been performed by FEM.

Kinematics and Optimization of 2-DOF Parallel Manipulator with Revolute Actuators and a Passive Leg

  • Nam Yun-Joo;Park Myeong-Kwan
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.828-839
    • /
    • 2006
  • In this paper, a 2-DOF planar parallel manipulator with two revolute actuators and one passive constraining leg. The kinematic analysis of the mechanism is analytically performed : the inverse and forward kinematics problems are solved in closed forms, the workspace is derived systematically, and the three kinds of singular configurations are round. The optimal design to determine the geometric parameters and the operating limits of the actuated legs is performed considering the kinematic manipulability and workspace size. These results of the paper show the effectiveness of the presented manipulator.

Tabletop Workspace with Tangible User Interface Using Infrared Vision Sense (위치와 각도를 인지하는 책상형 인터랙션 개발)

  • Shim Han-Su
    • Journal of Game and Entertainment
    • /
    • v.2 no.2
    • /
    • pp.70-74
    • /
    • 2006
  • In this paper I present a system that with infrared vision sense tracks the position and orientation of a wireless object on a tabletop display surface. The system offers two types of improvements over existing computer vision tracking approaches. First, the system tracks an object accurately without susceptibility to changes in lighting conditions. Second, the system tracks not only the orientation but button click state of the object. This system can detect these changes in real time. Finally, I present an application of the system : Color Lab Box.

  • PDF

Learning Optimal Trajectory Generation for Low-Cost Redundant Manipulator using Deep Deterministic Policy Gradient(DDPG) (저가 Redundant Manipulator의 최적 경로 생성을 위한 Deep Deterministic Policy Gradient(DDPG) 학습)

  • Lee, Seunghyeon;Jin, Seongho;Hwang, Seonghyeon;Lee, Inho
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.1
    • /
    • pp.58-67
    • /
    • 2022
  • In this paper, we propose an approach resolving inaccuracy of the low-cost redundant manipulator workspace with low encoder and low stiffness. When the manipulators are manufactured with low-cost encoders and low-cost links, the robots can run into workspace inaccuracy issues. Furthermore, trajectory generation based on conventional forward/inverse kinematics without taking into account inaccuracy issues will introduce the risk of end-effector fluctuations. Hence, we propose an optimization for the trajectory generation method based on the DDPG (Deep Deterministic Policy Gradient) algorithm for the low-cost redundant manipulators reaching the target position in Euclidean space. We designed the DDPG algorithm minimizing the distance along with the jacobian condition number. The training environment is selected with an error rate of randomly generated joint spaces in a simulator that implemented real-world physics, the test environment is a real robotic experiment and demonstrated our approach.