• 제목/요약/키워드: work uniform design

검색결과 151건 처리시간 0.018초

오리엔탈리즘을 응용한 유니폼 디자인 연구 - 한국·일본·중국의 전통의상을 중심으로 - (A Study on Uniform Design Applied Orientalism)

  • 진경옥;이민정
    • 한국의류산업학회지
    • /
    • 제5권5호
    • /
    • pp.443-452
    • /
    • 2003
  • People have been getting interested in the Orientalism and it has come up in various areas due to scientific progress. I designed uniforms, which was simple and western, to show its symbolic meanings in the Orientalism. And I have been trying to generalize uniforms with originality and beauty. I have studied the process of the Orientalism and its changes and transitions, concepts and origins in history. And I applied the styles of Korean, Japanese and Chineses costume on it. I also referred to characters of uniforms, which already had images of Korea, Japan and China. Firstly, Korean styles have a contrast in colors by application of Taegeuk. And they gave lines with dark colors in black one-piece dress. This makes people who are wearing looking slimmer. White ramie top looks fresh and Korean traditional tie called Maedeup is set up for button. Secondly, Japanese styles were mainly Kimono style, one piece. They changed into two pieces designed to be active. So, it has emphasized the image of Kimono with Obi at the waist. Thirdly, Chinese styles basically are Chipao style, which has a Chinese collar and a long skirt, which has opening. But they gradually changed into short skirts and more open in the chest. For one of them, they gave lines in the side of chest, sleeves and skirt to be more natural. The costumes have kept their positions as a part of mass society that grows and changes with speed. And oriental uniforms are not just uniforms any longer only for work. It is quite symbolic like a 'second face' as it represents images for their countries and enterprises.

혈중 산소 포화도의 정확한 공간 매핑을 위한 다중 파장 LED 단일소자를 활용한 이미징 시스템 설계 (A Simple Design of an Imaging System for Accurate Spatial Mapping of Blood Oxygen Saturation Using a Single Element of Multi-wavelength LED)

  • 김준환;유기연;송예은;유찬영;장윤채;무하마드 리아즈;케이 뜨웨 툰;아메드 알리;최승호
    • 대한의용생체공학회:의공학회지
    • /
    • 제44권6호
    • /
    • pp.450-464
    • /
    • 2023
  • Pulse oximetry, a non-invasive technique for evaluating blood oxygen saturation, conventionally depends on isolated measurements, rendering it vulnerable to factors like illumination profile, spatial blood flow fluctuations, and skin pigmentation. Previous efforts to address these issues through imaging systems often employed red and near-infrared illuminations with distinct profiles, leading to inconsistent ratios of transmitted light and the potential for errors in calculating spatial oxygen saturation distributions. While an integrating sphere was recently utilized as an illumination source to achieve uniform red and near-infrared illumination profiles on the sample surface, its bulkiness presented practical challenges. In this work, we have enhanced the pulse oximetry imaging system by transitioning illumination from an integrating sphere to a multi-wavelength LED configuration. This adjustment ensures simultaneous emission of red and near-infrared light from the same position, creating a homogeneous illumination profile on the sample surface. This approach guarantees consistent patterns of red and near-infrared illuminations that are spatially uniform. The sustained ratio between transmitted red and near-infrared light across space enables precise calculation of the spatial distribution of oxygen saturation, making our pulse oximetry imaging system more compact and portable without compromising accuracy. Our work significantly contributes to obtaining spatial information on blood oxygen saturation, providing valuable insights into tissue oxygenation in peripheral regions.

Brazilian Test of Concrete Specimens Subjected to Different Loading Geometries: Review and New Insights

  • Garcia, Victor J.;Marquez, Carmen O.;Zuniga-Suarez, Alonso R.;Zuniga-Torres, Berenice C.;Villalta-Granda, Luis J.
    • International Journal of Concrete Structures and Materials
    • /
    • 제11권2호
    • /
    • pp.343-363
    • /
    • 2017
  • The objective of this work was finding out the most advisable testing conditions for an effective and robust characterization of the tensile strength (TS) of concrete disks. The independent variables were the loading geometry, the angle subtended by the contact area, disk diameter and thickness, maximum aggregate size, and the sample compression strength (CS). The effect of the independent variables was studied in a three groups of experiments using a factorial design with two levels and four factors. The likeliest location where failure beginning was calculated using the equations that account for the stress-strain field developed within the disk. The theoretical outcome shows that for failure beginning at the geometric center of the sample, it is necessary for the contact angle in the loading setup to be larger than or equal to a threshold value. Nevertheless, the measured indirect tensile strength must be adjusted to get a close estimate of the uniaxial TS of the material. The correction depends on the loading geometry, and we got their mathematical expression and cross-validated them with the reported in the literature. The experimental results show that a loading geometry with a curved contact area, uniform load distribution over the contact area, loads projected parallel to one another within the disk, and a contact angle bigger of $12^{\circ}$ is the most advisable and robust setup for implementation of BT on concrete disks. This work provides a description of the BT carries on concrete disks and put forward a characterization technique to study costly samples of cement based material that have been enabled to display new and improved properties with nanomaterials.

Time dependent finite element analysis of steel-concrete composite beams considering partial interaction

  • Dias, Maiga M.;Tamayo, Jorge L.P.;Morsch, Inacio B.;Awruch, Armando M.
    • Computers and Concrete
    • /
    • 제15권4호
    • /
    • pp.687-707
    • /
    • 2015
  • A finite element computer code for short-term analysis of steel-concrete composite structures is extended to study long-term effects under service loads, in the present work. Long-term effects are important in engineering design because they influence stress and strain distribution of the structural system and therefore contribute to the increment of deflections in these structures. For creep analysis, a rheological model based on a Kelvin chain, with elements placed in series, was employed. The parameters of the Kelvin chain were obtained using Dirichlet series. Creep and shrinkage models, proposed by the CEB FIP 90, were used. The shear-lag phenomenon that takes place at the concrete slab is usually neglected or not properly taken into account in the formulation of beam-column finite elements. Therefore, in this work, a three-dimensional numerical model based on the assemblage of shell finite elements for representing the steel beam and the concrete slab is used. Stud shear connectors are represented for special beam-column elements to simulate the partial interaction at the slab-beam interface. The two-dimensional representation of the concrete slab permits to capture the non-uniform shear stress distribution in the horizontal plane of the slab due to shear-lag phenomenon. The model is validated with experimental results of two full-scale continuous composite beams previously studied by other authors. Results are given in terms of displacements, bending moments and cracking patterns in order to shown the influence of long-term effects in the structural response and also the potentiality of the present numerical code.

공공 건축사업의 공사기간 산정 현황 분석을 통한 개선방안 (Improvement Plan Through Analysis of the Current Status of Construction Period Calculation of Public Construction Projects)

  • 이종태;윤현도
    • 한국건설관리학회논문집
    • /
    • 제22권3호
    • /
    • pp.12-20
    • /
    • 2021
  • 건설 품질 및 안전 확보, 비용분쟁 방지를 위해 최근, '적정 공사기간' 산정의 중요성이 부각되었다. 건축공사기간 산정기준 마련을 위해서는 상당량의 과거자료 분석이 필요하다. 그러나, 근로시간 단축, 품질규정 강화 및 기후조건 변화 등 건설사업 환경이 이미 변경되어 과거자료의 사용에 대해 많은 전문가들이 의문을 제기하고 있는 실정이다. 또한, 건축공사는 공사 여건에 따라 작업순서, 생산성 등이 매우 다양해 과거 통계치를 활용한 획일적인 공사기간 산정 시 오류 가능성이 상승한다. 따라서, 적극적인 '생각의 전환'을 통해 과거자료 분석 방식에서 현재생산자료 검토 방식으로 변경하는 새로운 해법을 본 연구를 통해 제시하였다. 즉, 설계단계에 '공정관리 전문가' 및 '공종별 시공전문가'를 투입하여, '적정 공사기간'을 검토·산정하는 절차를 제도화하였다.

A comprehensively overall track-bridge interaction study on multi-span simply supported beam bridges with longitudinal continuous ballastless slab track

  • Su, Miao;Yang, Yiyun;Pan, Rensheng
    • Structural Engineering and Mechanics
    • /
    • 제78권2호
    • /
    • pp.163-174
    • /
    • 2021
  • Track-bridge interaction has become an essential part in the design of bridges and rails in terms of modern railways. As a unique ballastless slab track, the longitudinal continuous slab track (LCST) or referred to as the China railway track system Type-II (CRTS II) slab track, demonstrates a complex force mechanism. Therefore, a comprehensive track-bridge interaction study between multi-span simply supported beam bridges and the LCST is presented in this work. In specific, we have developed an integrated finite element model to investigate the overall interaction effects of the LCST-bridge system subjected to the actions of temperature changes, traffic loads, and braking forces. In that place, the deformation patterns of the track and bridge, and the distributions of longitudinal forces and the interfacial shear stress are studied. Our results show that the additional rail stress has been reduced under various loads and the rail's deformation has become much smoother after the transition of the two continuous structural layers of the LCST. However, the influence of the temperature difference of bridges is significant and cannot be ignored as this action can bend the bridge like the traffic load. The uniform temperature change causes the tensile stress of the concrete track structure and further induce cracks in them. Additionally, the influences of the friction coefficient of the sliding layer and the interfacial bond characteristics on the LCST's performance are discussed. The systematic study presented in this work may have some potential impacts on the understanding of the overall mechanical behavior of the LCST-bridge system.

Data-mining modeling for the prediction of wear on forming-taps in the threading of steel components

  • Bustillo, Andres;Lopez de Lacalle, Luis N.;Fernandez-Valdivielso, Asier;Santos, Pedro
    • Journal of Computational Design and Engineering
    • /
    • 제3권4호
    • /
    • pp.337-348
    • /
    • 2016
  • An experimental approach is presented for the measurement of wear that is common in the threading of cold-forged steel. In this work, the first objective is to measure wear on various types of roll taps manufactured to tapping holes in microalloyed HR45 steel. Different geometries and levels of wear are tested and measured. Taking their geometry as the critical factor, the types of forming tap with the least wear and the best performance are identified. Abrasive wear was observed on the forming lobes. A higher number of lobes in the chamber zone and around the nominal diameter meant a more uniform load distribution and a more gradual forming process. A second objective is to identify the most accurate data-mining technique for the prediction of form-tap wear. Different data-mining techniques are tested to select the most accurate one: from standard versions such as Multilayer Perceptrons, Support Vector Machines and Regression Trees to the most recent ones such as Rotation Forest ensembles and Iterated Bagging ensembles. The best results were obtained with ensembles of Rotation Forest with unpruned Regression Trees as base regressors that reduced the RMS error of the best-tested baseline technique for the lower length output by 33%, and Additive Regression with unpruned M5P as base regressors that reduced the RMS errors of the linear fit for the upper and total lengths by 25% and 39%, respectively. However, the lower length was statistically more difficult to model in Additive Regression than in Rotation Forest. Rotation Forest with unpruned Regression Trees as base regressors therefore appeared to be the most suitable regressor for the modeling of this industrial problem.

현대패션에 나타난 점프 슈트(Jump Suit)의 조형성과 특성 (A Study on the Plasticity and Characteristics on Jump Suit Shown in the Modern Fashion)

  • 김선영
    • 한국생활과학회지
    • /
    • 제23권3호
    • /
    • pp.515-527
    • /
    • 2014
  • This study is intended to develop the creative and high value-added products as well as the development of diversity for jump suit for the future by analyzing the trend and feature shown in jump suit in the modern fashion. In the research methodology, the analysis was carried out over a total of 351 work pieces on jump suit among those presented in the collection of Paris, Milan, New York and London from 2006S/S to 2013F/W as well as literature review. The aesthetic features on suit jump design introduced in the modern fashion could be characterized as the following. First, both upper and lower garments are composed with a simple array of items and the stress was put on modernity feature through minimal expression technique. The feature of solid simplicity was also given with achromatic color or neutral monochrome. Second, the feminity image was emphasized with adoption of such highlighting items as detailed add-ons, tops, camisoles and blouses that stress the organically curved streamline including silhouette, material itself, crease and drape that enable the direct and indirect exposition of human body and the expression of smooth curve in human body. Third, jump suit revealed the multipurpose feature as item available for the diverse wear such as working habiliment, sports wear, uniform, office wear and evening wear, depending on the terms and conditions. Fourth, the deconstructive characteristic appeared through integration with various items, destruction of formative structure, non-structural shape, and ambiguity in wearing method.

정역 회전법에 의한 고순도 알루미늄의 응고 및 정련에 관한 연구 (A Study on the Solidification and Purification of High Purity Aluminium Alternate Stirring Method)

  • 김욱;이종기;백홍구;허성강
    • 한국주조공학회지
    • /
    • 제12권3호
    • /
    • pp.220-229
    • /
    • 1992
  • The degree of purification and the macrostructure of high purity aluminium were studied through the alternate stirring method in order to improve the nonuniformity of solute concentration in the unidirectional stirring method. The $2^3$ factorial design was done to examine the effects of experimental factors more qualitatively. In the relatively low stirring speed of 1500 rpm with alternate stirring mode, the uniform solute profile and refined grain structure were obtained due to strong washing effect and turbulent fluid flow. It was induced by the transition of the momentum boundary layer by alternation of the stirrer. It was concluded from this study that the alternate stirring mode was more effective to obtain the uniformity of solute even in the stirring speed of 1500 rpm. But the degree of purification decreased below the critical alternating period. When 2N(99.8wt.%) aluminium was used as the starting material the morphology of solid-liquid showed the cellular shape and the columnar grains were inclined to the direction of rotation. This inclined grain growth resulted from the difference of relative velocities of solid and liquid. The inclined angle was increased as the stirring speed increased and solidification proceeded. In the case of 4N aluminium, there was no inclined grain growth and it was confirmed from the macrostructure and SEM work that the morphology of solid-liquid interface was planar. From the factorial design, it was found that the alternate stirring mode showed poorer purification effect than that of unidirectional stirring mode at low speed(500 rpm). In addition, the factor that had the most significant effect on the degree of purification was the stirring speed.

  • PDF

Dynamic response of FG porous nanobeams subjected thermal and magnetic fields under moving load

  • Esen, Ismail;Alazwari, Mashhour A.;Eltaher, Mohamed A;Abdelrahman, Alaa A.
    • Steel and Composite Structures
    • /
    • 제42권6호
    • /
    • pp.805-826
    • /
    • 2022
  • The free and live load-forced vibration behaviour of porous functionally graded (PFG) higher order nanobeams in the thermal and magnetic fields is investigated comprehensively through this work in the framework of nonlocal strain gradient theory (NLSGT). The porosity effects on the dynamic behaviour of FG nanobeams is investigated using four different porosity distribution models. These models are exploited; uniform, symmetrical, condensed upward, and condensed downward distributions. The material characteristics gradation in the thickness direction is estimated using the power-law. The magnetic field effect is incorporated using Maxwell's equations. The third order shear deformation beam theory is adopted to incorporate the shear deformation effect. The Hamilton principle is adopted to derive the coupled thermomagnetic dynamic equations of motion of the whole system and the associated boundary conditions. Navier method is used to derive the analytical solution of the governing equations. The developed methodology is verified and compared with the available results in the literature and good agreement is observed. Parametric studies are conducted to show effects of porosity parameter; porosity distribution, temperature rise, magnetic field intensity, material gradation index, non-classical parameters, and the applied moving load velocity on the vibration behavior of nanobeams. It has been showed that all the analyzed conditions have significant effects on the dynamic behavior of the nanobeams. Additionally, it has been observed that the negative effects of moving load, porosity and thermal load on the nanobeam dynamics can be reduced by the effect of the force induced from the directed magnetic field or can be kept within certain desired design limits by controlling the intensity of the magnetic field.