• Title/Summary/Keyword: word similarity

Search Result 301, Processing Time 0.028 seconds

Question Similarity Measurement of Chinese Crop Diseases and Insect Pests Based on Mixed Information Extraction

  • Zhou, Han;Guo, Xuchao;Liu, Chengqi;Tang, Zhan;Lu, Shuhan;Li, Lin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.11
    • /
    • pp.3991-4010
    • /
    • 2021
  • The Question Similarity Measurement of Chinese Crop Diseases and Insect Pests (QSM-CCD&IP) aims to judge the user's tendency to ask questions regarding input problems. The measurement is the basis of the Agricultural Knowledge Question and Answering (Q & A) system, information retrieval, and other tasks. However, the corpus and measurement methods available in this field have some deficiencies. In addition, error propagation may occur when the word boundary features and local context information are ignored when the general method embeds sentences. Hence, these factors make the task challenging. To solve the above problems and tackle the Question Similarity Measurement task in this work, a corpus on Chinese crop diseases and insect pests(CCDIP), which contains 13 categories, was established. Then, taking the CCDIP as the research object, this study proposes a Chinese agricultural text similarity matching model, namely, the AgrCQS. This model is based on mixed information extraction. Specifically, the hybrid embedding layer can enrich character information and improve the recognition ability of the model on the word boundary. The multi-scale local information can be extracted by multi-core convolutional neural network based on multi-weight (MM-CNN). The self-attention mechanism can enhance the fusion ability of the model on global information. In this research, the performance of the AgrCQS on the CCDIP is verified, and three benchmark datasets, namely, AFQMC, LCQMC, and BQ, are used. The accuracy rates are 93.92%, 74.42%, 86.35%, and 83.05%, respectively, which are higher than that of baseline systems without using any external knowledge. Additionally, the proposed method module can be extracted separately and applied to other models, thus providing reference for related research.

Selective Word Embedding for Sentence Classification by Considering Information Gain and Word Similarity (문장 분류를 위한 정보 이득 및 유사도에 따른 단어 제거와 선택적 단어 임베딩 방안)

  • Lee, Min Seok;Yang, Seok Woo;Lee, Hong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.105-122
    • /
    • 2019
  • Dimensionality reduction is one of the methods to handle big data in text mining. For dimensionality reduction, we should consider the density of data, which has a significant influence on the performance of sentence classification. It requires lots of computations for data of higher dimensions. Eventually, it can cause lots of computational cost and overfitting in the model. Thus, the dimension reduction process is necessary to improve the performance of the model. Diverse methods have been proposed from only lessening the noise of data like misspelling or informal text to including semantic and syntactic information. On top of it, the expression and selection of the text features have impacts on the performance of the classifier for sentence classification, which is one of the fields of Natural Language Processing. The common goal of dimension reduction is to find latent space that is representative of raw data from observation space. Existing methods utilize various algorithms for dimensionality reduction, such as feature extraction and feature selection. In addition to these algorithms, word embeddings, learning low-dimensional vector space representations of words, that can capture semantic and syntactic information from data are also utilized. For improving performance, recent studies have suggested methods that the word dictionary is modified according to the positive and negative score of pre-defined words. The basic idea of this study is that similar words have similar vector representations. Once the feature selection algorithm selects the words that are not important, we thought the words that are similar to the selected words also have no impacts on sentence classification. This study proposes two ways to achieve more accurate classification that conduct selective word elimination under specific regulations and construct word embedding based on Word2Vec embedding. To select words having low importance from the text, we use information gain algorithm to measure the importance and cosine similarity to search for similar words. First, we eliminate words that have comparatively low information gain values from the raw text and form word embedding. Second, we select words additionally that are similar to the words that have a low level of information gain values and make word embedding. In the end, these filtered text and word embedding apply to the deep learning models; Convolutional Neural Network and Attention-Based Bidirectional LSTM. This study uses customer reviews on Kindle in Amazon.com, IMDB, and Yelp as datasets, and classify each data using the deep learning models. The reviews got more than five helpful votes, and the ratio of helpful votes was over 70% classified as helpful reviews. Also, Yelp only shows the number of helpful votes. We extracted 100,000 reviews which got more than five helpful votes using a random sampling method among 750,000 reviews. The minimal preprocessing was executed to each dataset, such as removing numbers and special characters from text data. To evaluate the proposed methods, we compared the performances of Word2Vec and GloVe word embeddings, which used all the words. We showed that one of the proposed methods is better than the embeddings with all the words. By removing unimportant words, we can get better performance. However, if we removed too many words, it showed that the performance was lowered. For future research, it is required to consider diverse ways of preprocessing and the in-depth analysis for the co-occurrence of words to measure similarity values among words. Also, we only applied the proposed method with Word2Vec. Other embedding methods such as GloVe, fastText, ELMo can be applied with the proposed methods, and it is possible to identify the possible combinations between word embedding methods and elimination methods.

Retrieving English Words with a Spoken Work Transliteration (입말 표기를 이용한 영어 단어 검색)

  • Kim Ji-Seoung;Kim Kwang-Hyun;Lee Joon-Ho
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.39 no.3
    • /
    • pp.93-103
    • /
    • 2005
  • Users of searching Internet English dictionary sometimes do not know the correct spelling of the word in mind, but remember only its pronunciation. In order to help these users, we propose a method to retrieve English words effectively with a spoken word transliteration that is a Korean transliteration of English word pronunciation. We develop KONIX codes and transform a spoken word transliteration and English words into them. We then calculate the phonetic similarity between KONIX codes using edit distance and 2-gram methods. Experimental results show that the proposed method is very effective for retrieving English words with a spoken word transliteration.

Developing an Alias Management Method based on Word Similarity Measurement for POI Application

  • Choi, Jihye;Lee, Jiyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.2
    • /
    • pp.81-89
    • /
    • 2019
  • As the need for the integration of administrative datasets and address information increases, there is also growing interest in POI (Point of Interest) data as a source of location information across applications and platforms. The purpose of this study is to develop an alias database management method for efficient POI searching, based on POI data representing position. First, we determine the attributes of POI alias data as it is used variously by individual users. When classifying aliases of POIs, we excluded POIs in which the typo and names are all in English alphabet. The attributes of POI aliases are classified into four categories, and each category is reclassified into three classes according to the strength of the attributes. We then define the quality of POI aliases classified in this study through experiments. Based on the four attributes of POI defined in this study, we developed a method of managing one POI alias through and integrated method composed of word embedding and a similarity measurement. Experimental results of the proposed POI alias management method show that it is possible to utilize the algorithm developed in this study if there are small numbers of aliases in each POI with appropriate POI attributes defined in this study.

Word Sense Similarity Clustering Based on Vector Space Model and HAL (벡터 공간 모델과 HAL에 기초한 단어 의미 유사성 군집)

  • Kim, Dong-Sung
    • Korean Journal of Cognitive Science
    • /
    • v.23 no.3
    • /
    • pp.295-322
    • /
    • 2012
  • In this paper, we cluster similar word senses applying vector space model and HAL (Hyperspace Analog to Language). HAL measures corelation among words through a certain size of context (Lund and Burgess 1996). The similarity measurement between a word pair is cosine similarity based on the vector space model, which reduces distortion of space between high frequency words and low frequency words (Salton et al. 1975, Widdows 2004). We use PCA (Principal Component Analysis) and SVD (Singular Value Decomposition) to reduce a large amount of dimensions caused by similarity matrix. For sense similarity clustering, we adopt supervised and non-supervised learning methods. For non-supervised method, we use clustering. For supervised method, we use SVM (Support Vector Machine), Naive Bayes Classifier, and Maximum Entropy Method.

  • PDF

A Question Example Generation System for Multiple Choice Tests by utilizing Concept Similarity in Korean WordNet (한국어 워드넷에서의 개념 유사도를 활용한 선택형 문항 생성 시스템)

  • Kim, Young-Bum;Kim, Yu-Seop
    • The KIPS Transactions:PartA
    • /
    • v.15A no.2
    • /
    • pp.125-134
    • /
    • 2008
  • We implemented a system being able to suggest example sentences for multiple choice tests, considering the level of students. To build the system, we designed an automatic method for sentence generation, which made it possible to control the difficulty degree of questions. For the proper evaluation in the multiple choice tests, proper size of question pools is required. To satisfy this requirement, a system which can generate various and numerous questions and their example sentences in a fast way should be used. In this paper, we designed an automatic generation method using a linguistic resource called WordNet. For the automatic generation, firstly, we extracted keywords from the existing sentences with the morphological analysis and candidate terms with similar meaning to the keywords in Korean WordNet space are suggested. When suggesting candidate terms, we transformed the existing Korean WordNet scheme into a new scheme to construct the concept similarity matrix. The similarity degree between concepts can be ranged from 0, representing synonyms relationships, to 9, representing non-connected relationships. By using the degree, we can control the difficulty degree of newly generated questions. We used two methods for evaluating semantic similarity between two concepts. The first one is considering only the distance between two concepts and the second one additionally considers positions of two concepts in the Korean Wordnet space. With these methods, we can build a system which can help the instructors generate new questions and their example sentences with various contents and difficulty degree from existing sentences more easily.

What is the neighbors of a word in Korean word recognition\ulcorner (한국어 단어재인의 이웃(neighborhood)단위)

  • Cho Hye Suk;Nam Ki Chun
    • Proceedings of the KSPS conference
    • /
    • 2002.11a
    • /
    • pp.97-100
    • /
    • 2002
  • The purpose of this paper is to investigate the unit of neighbor of Korean words. In English, a word's orthographic neighborhood is defined as the set of words that can be created by changing one letter of the word while preserving letter positions. For example, the words like pike, pole, and tile are all orthographic neighbors of the word 'pile'. In this study, 2 experiments were performed. In these experiments, 4 conditions of prime were included: primes sharing first letter of first syllable(1), first syllable(2), first syllable and the first letter of second syllable with target(3) and with no formal similarity with target(4). In Exp.1, RT was shortest in condition 3. In Exp.2, condition 2 had the shortest RT. We came to the conclusion that in Korean, a word's neighbor is words that share at least one syllable with the word.

  • PDF

A Method of Service Refinement for Network-Centric Operational Environment

  • Lee, Haejin;Kang, Dongsu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.12
    • /
    • pp.97-105
    • /
    • 2016
  • Network-Centric Operational Environment(NCOE) service becomes critical in today's military environment network because reusability of service and interaction are being increasingly important as well in business process. However, the refinement of service by semantic similarity and functional similarity at the business process was not detailed yet. In order to enhance accuracy of refining of business service, in this study, the authors introduce a method for refining service by semantic similarity and functional similarity in BPMN model. The business process are designed in a BPMN model. In this model, candidated services are refined through binding related activities by the analysis result of semantic similarity based on word-net and functional similarity based on properties specification between activities. Then, the services are identified through refining the candidated service. The proposed method is expected to enhance the service identification with accuracy and modularity. It also can accelerate more standardized service refinement developments by the proposed method.

An Effective Estimation method for Lexical Probabilities in Korean Lexical Disambiguation (한국어 어휘 중의성 해소에서 어휘 확률에 대한 효과적인 평가 방법)

  • Lee, Ha-Gyu
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.6
    • /
    • pp.1588-1597
    • /
    • 1996
  • This paper describes an estimation method for lexical probabilities in Korean lexical disambiguation. In the stochastic to lexical disambiguation lexical probabilities and contextual probabilities are generally estimated on the basis of statistical data extracted form corpora. It is desirable to apply lexical probabilities in terms of word phrases for Korean because sentences are spaced in the unit of word phrase. However, Korean word phrases are so multiform that there are more or less chances that lexical probabilities cannot be estimated directly in terms of word phrases though fairly large corpora are used. To overcome this problem, similarity for word phrases is defined from the lexical analysis point of view in this research and an estimation method for Korean lexical probabilities based on the similarity is proposed. In this method, when a lexical probability for a word phrase cannot be estimated directly, it is estimated indirectly through the word phrase similar to the given one. Experimental results show that the proposed approach is effective for Korean lexical disambiguation.

  • PDF

Design and Implementation of Minutes Summary System Based on Word Frequency and Similarity Analysis (단어 빈도와 유사도 분석 기반의 회의록 요약 시스템 설계 및 구현)

  • Heo, Kanhgo;Yang, Jinwoo;Kim, Donghyun;Bok, Kyoungsoo;Yoo, Jaesoo
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.10
    • /
    • pp.620-629
    • /
    • 2019
  • An automated minutes summary system is required to objectively summarize and classify the contents of discussions or discussions for decision making. This paper designs and implements a minutes summary system using word2vec model to complement the existing minutes summary system. The proposed system is further implemented with word2vec model to remove index words during morpheme analysis and to extract representative sentences with common opinions from documents. The proposed system automatically classifies documents collected during the meeting process and extracts representative sentences representing the agenda among various opinions. The conference host can quickly identify and manage all the agendas discussed at the meeting through the proposal system. The proposed system analyzes various agendas of large-scale debates or discussions and summarizes sentences that can be representative opinions to support fast and accurate decision making.