This parer presents a method of ranking translation word selection for Korean verbs based on lexical knowledge contained in a bilingual Korean-English dictionary and WordNet that are easily obtainable knowledge resources. We focus on deciding which translation of the target word is the most appropriate using the measure of semantic relatedness through the 45 extended relations between possible translations of target word and some indicative clue words that play a role of predicate-arguments in source language text. In order to reduce the weight of application of possibly unwanted senses, we rank the possible word senses for each translation word by measuring semantic similarity between the translation word and its near synonyms. We report an average accuracy of $51\%$ with ten Korean ambiguous verbs. The evaluation suggests that our approach outperforms the default baseline performance and previous works.
This paper presents a set of methodologies for aligning hypernym-hyponym noun pairs between Korean and English, based on the EuroWordNet approach. Following the methods conducted in EuroWordNet, our approach makes extensive use of WordNet in four steps of the building process: 1) Monolingual dictionaries have been used to extract proper hypernym-hyponym noun pairs, 2) bilingual dictionary has converted the extracted pairs, 3) Word Net has been used as a backbone of alignment criteria, and 4) WordNet has been used to select the most similar pair among the candidates. The importance of this study lies not only on enriching semantic links between two languages, but also on integrating lexical resources based on a language specific and dependent structure. Our approaches are aimed at building an accurate and detailed lexical resource with proper measures rather than at fast development of generic one using NLP technique.
Many isolated word recognition systems may generate non-similar words for recognition candidates because they use only acoustic information. In this paper, we investigate several techniques which can exclude non-similar words from N-best candidate words by applying Levenstein distance measure. At first, word distance method based on phone and syllable distances are considered. These methods use just Levenstein distance on phones or double Levenstein distance algorithm on syllables of candidates. Next, word similarity approaches are presented that they use characters' position information of word candidates. Each character's position is labeled to inserted, deleted, and correct position after alignment between source and target string. The word similarities are obtained from characters' positional probabilities which mean the frequency ratio of the same characters' observations on the position. From experimental results, we can find that the proposed methods are effective for removing non-similar words without loss of system performance from the N-best recognition candidates of the systems.
유사문장의 식별 및 통합을 위하여 문장의 구성성분, 품사, 절유형, 위치 등이 미치는 영향을 조사하고 유사도측정 공식과 통합방안을 모색하였다. 문법적 요인보다는 문장간에 일치하는 단어의 수가 유사성에 영향을 미치며 표제어와 기능절도 관여되었다. 문장간의 유사도 측정 공식은 설튼의 유사도 측정식과 코싸인계수를 혼합하여 사용하였다. 유사문장들의 통합에서 절들의 대체 방법을 사용하였는데 앞으로는 단어들의 대체 방법으로 전환하여야 할 것이다.
There is a case where the core content of another person's work is decorated as though it is his own thoughts by changing own thoughts without showing the source. Plagiarism test of copykiller free service used in plagiarism check is performed by comparing plagiarism more than 6th word. However, it is not enough to judge it as a plagiarism with a six - word match if it is replaced with a similar word. Therefore, in this paper, we construct word clusters by using DBSCAN algorithm, find synonyms, convert the words in the clusters into representative synonyms, and construct L-R tables through L-R parsing. We then propose a method for determining the similarity of documents by applying weights to the thesaurus and weights for each paragraph of the thesis.
본 연구는 자연어 처리 문제 중 하나인 문장 유사도 판별 문제를 딥러닝으로 해결하는 데에 있어 Char2Vec기반으로 문장을 전 처리하고 학습시켜 그 성능을 확인하고 대표적인 Word Embedding 모델 Word2Vec를 대체할 수 있는 가능성이 있는지 파악하고자 한다. 임의의 두 문장을 비교할 때 쓰는 딥러닝 구조로 Siamese Ma-STM 네트워크를 사용하였다. Word2Vec와 Char2Vec를 각각 기반으로 한 문장 유사도 판별 모델을 학습시키고 그 결과를 분석하였다. 실험 결과 Char2Vec를 기반으로 학습시킨 모델이 validation accuracy 75.1%을 보였고 Word2Vec를 기반으로 학습시킨 모델은 validation accuracy 71.6%를 보였다. 따라서 고 사양을 요구하는 Word2Vec대신 임베딩 레이어를 활용한 Char2Vec 기반의 전처리 모델을 활용함으로 분석 환경을 최적화 할 수 있다.
문장 또는 텍스트 유사도란 두 가지 문장의 유사한 정도를 나타내는 척도이다. 텍스트의 유사도를 측정하는 기법으로 자카드 유사도, 코사인 유사도, 유클리디언 유사도, 맨하탄 유사도 등과 같이 있다. 현재 코사인 유사도 기법을 가장 많이 사용하고 있으나 이는 문장에서 단어의 출현 여부와 빈도수에 따른 분석이기 때문에, 의미적 관계에 대한 분석이 부족하다. 이에 우리는 온톨로지를 이용하여 단어 간의 관계를 부여하고, 두 문장에서 공통으로 포함된 단어를 추출할 때 의미적 유사성을 포함함으로써 문장의 유사도에 분석의 효율을 향상하고자 한다.
통계기계번역에서 번역성능의 향상을 위해서 문장의 유형이나 장르에 따라 클러스터링을 수행하여 도메인에 특화된 번역을 시도하는 방법이 있다. 그러나 기존의 연구 중 문장의 유형 정보와 장르에 따른 정보를 동시에 사용한 경우는 없었다. 본 논문에서는 각 문장의 문법적 구조 유사도에 따른 유형별분류 기법과, 단어 유사도 정보를 사용한 장르 구분법을 적용하여 기존의 두 기법을 통합하였다. 이렇게 분류된 말뭉치에서 추출한 도메인 특화 모델과 전체 말뭉치에서 추출된 모델에서 보간법(interpolation)을 사용하여 통계기계번역의 성능을 향상하였다. 문장구조 유사도와 단어 유사도의 계산 방법으로는 각각 커널과 코사인 유사도를 적용하였으며, 두 유사도를 적용하여 말뭉치를 분류하는 과정에서는 K-Means 알고리즘과 유사한 기계학습 기법을 사용하였다. 이를 일본어-영어의 특허문서에서 실험한 결과 최선의 경우 약 2.5%의 상대적인 성능 향상을 얻었다.
Younas, Farah;Nadir, Jumana;Usman, Muhammad;Khan, Muhammad Attique;Khan, Sajid Ali;Kadry, Seifedine;Nam, Yunyoung
KSII Transactions on Internet and Information Systems (TIIS)
/
제15권6호
/
pp.2049-2068
/
2021
AI combined with NLP techniques has promoted the use of Virtual Assistants and have made people rely on them for many diverse uses. Conversational Agents are the most promising technique that assists computer users through their operation. An important challenge in developing Conversational Agents globally is transferring the groundbreaking expertise obtained in English to other languages. AI is making it possible to transfer this learning. There is a dire need to develop systems that understand secular languages. One such difficult language is Hindi, which is the fourth most spoken language in the world. Semantic similarity is an important part of Natural Language Processing, which involves applications such as ontology learning and information extraction, for developing conversational agents. Most of the research is concentrated on English and other European languages. This paper presents a Corpus-based word semantic similarity measure for Hindi. An experiment involving the translation of the English benchmark dataset to Hindi is performed, investigating the incorporation of the corpus, with human and machine similarity ratings. A significant correlation to the human intuition and the algorithm ratings has been calculated for analyzing the accuracy of the proposed similarity measures. The method can be adapted in various applications of word semantic similarity or module for any other language.
게임은 소프트웨어 특성상 출시 후 사용자들의 반응을 빠르게 파악하여 개선하는 것이 중요하다. 하지만 구글 플레이 앱 스토어 등 사용자들이 게임을 다운로드하고 리뷰를 올릴 수 있는 대부분의 사이트들은 게임 리뷰에 대한 매우 제한적이고 모호한 분류 기능만을 제공한다. 따라서 본 논문에서는 사용자들이 사이트에 올린 게임 리뷰를 보다 명확하고 운영에 유용한 주제들로 자동 분류하는 시스템을 개발한다. 본 논문에서 개발한 시스템은 리뷰에 포함된 단어들을 대표적인 단어 임베딩 모델인 word2vec을 사용하여 벡터들로 변환하고, 이 벡터들과 각 주제 간 유사도를 측정하여 해당 리뷰를 관련된 주제로 분류한다. 특히 분류 성능에 직접적인 영향을 미치는 벡터 간 유사도 측정 방법을 선택하기 위해 본 연구에서는 대표적인 벡터 간 유사도 측정 방법인 유클리디안 유사도, 코사인 유사도, 확장된 자카드 유사도의 성능을 실제 데이터를 사용하여 비교하였다. 또한 어떤 리뷰가 둘 이상의 주제에 해당하는 경우를 위해 임계값에 기반한 다중 분류 방법을 사용하였다. 구글 플레이 앱스토어의 실제 데이터를 사용한 실험 결과 본 시스템은 95%까지의 정확도를 보임을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.