• Title/Summary/Keyword: word semantic information

Search Result 308, Processing Time 0.024 seconds

Extraction of ObjectProperty-UsageMethod Relation from Web Documents

  • Pechsiri, Chaveevan;Phainoun, Sumran;Piriyakul, Rapeepun
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1103-1125
    • /
    • 2017
  • This paper aims to extract an ObjectProperty-UsageMethod relation, in particular the HerbalMedicinalProperty-UsageMethod relation of the herb-plant object, as a semantic relation between two related sets, a herbal-medicinal-property concept set and a usage-method concept set from several web documents. This HerbalMedicinalProperty-UsageMethod relation benefits people by providing an alternative treatment/solution knowledge to health problems. The research includes three main problems: how to determine EDU (where EDU is an elementary discourse unit or a simple sentence/clause) with a medicinal-property/usage-method concept; how to determine the usage-method boundary; and how to determine the HerbalMedicinalProperty-UsageMethod relation between the two related sets. We propose using N-Word-Co on the verb phrase with the medicinal-property/usage-method concept to solve the first and second problems where the N-Word-Co size is determined by the learning of maximum entropy, support vector machine, and naïve Bayes. We also apply naïve Bayes to solve the third problem of determining the HerbalMedicinalProperty-UsageMethod relation with N-Word-Co elements as features. The research results can provide high precision in the HerbalMedicinalProperty-UsageMethod relation extraction.

A Study on the Identification and Classification of Relation Between Biotechnology Terms Using Semantic Parse Tree Kernel (시맨틱 구문 트리 커널을 이용한 생명공학 분야 전문용어간 관계 식별 및 분류 연구)

  • Choi, Sung-Pil;Jeong, Chang-Hoo;Chun, Hong-Woo;Cho, Hyun-Yang
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.45 no.2
    • /
    • pp.251-275
    • /
    • 2011
  • In this paper, we propose a novel kernel called a semantic parse tree kernel that extends the parse tree kernel previously studied to extract protein-protein interactions(PPIs) and shown prominent results. Among the drawbacks of the existing parse tree kernel is that it could degenerate the overall performance of PPI extraction because the kernel function may produce lower kernel values of two sentences than the actual analogy between them due to the simple comparison mechanisms handling only the superficial aspects of the constituting words. The new kernel can compute the lexical semantic similarity as well as the syntactic analogy between two parse trees of target sentences. In order to calculate the lexical semantic similarity, it incorporates context-based word sense disambiguation producing synsets in WordNet as its outputs, which, in turn, can be transformed into more general ones. In experiments, we introduced two new parameters: tree kernel decay factors, and degrees of abstracting lexical concepts which can accelerate the optimization of PPI extraction performance in addition to the conventional SVM's regularization factor. Through these multi-strategic experiments, we confirmed the pivotal role of the newly applied parameters. Additionally, the experimental results showed that semantic parse tree kernel is superior to the conventional kernels especially in the PPI classification tasks.

Using Syntax and Shallow Semantic Analysis for Vietnamese Question Generation

  • Phuoc Tran;Duy Khanh Nguyen;Tram Tran;Bay Vo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.10
    • /
    • pp.2718-2731
    • /
    • 2023
  • This paper presents a method of using syntax and shallow semantic analysis for Vietnamese question generation (QG). Specifically, our proposed technique concentrates on investigating both the syntactic and shallow semantic structure of each sentence. The main goal of our method is to generate questions from a single sentence. These generated questions are known as factoid questions which require short, fact-based answers. In general, syntax-based analysis is one of the most popular approaches within the QG field, but it requires linguistic expert knowledge as well as a deep understanding of syntax rules in the Vietnamese language. It is thus considered a high-cost and inefficient solution due to the requirement of significant human effort to achieve qualified syntax rules. To deal with this problem, we collected the syntax rules in Vietnamese from a Vietnamese language textbook. Moreover, we also used different natural language processing (NLP) techniques to analyze Vietnamese shallow syntax and semantics for the QG task. These techniques include: sentence segmentation, word segmentation, part of speech, chunking, dependency parsing, and named entity recognition. We used human evaluation to assess the credibility of our model, which means we manually generated questions from the corpus, and then compared them with the generated questions. The empirical evidence demonstrates that our proposed technique has significant performance, in which the generated questions are very similar to those which are created by humans.

Detection of Protein Subcellular Localization based on Syntactic Dependency Paths (구문 의존 경로에 기반한 단백질의 세포 내 위치 인식)

  • Kim, Mi-Young
    • The KIPS Transactions:PartB
    • /
    • v.15B no.4
    • /
    • pp.375-382
    • /
    • 2008
  • A protein's subcellular localization is considered an essential part of the description of its associated biomolecular phenomena. As the volume of biomolecular reports has increased, there has been a great deal of research on text mining to detect protein subcellular localization information in documents. It has been argued that linguistic information, especially syntactic information, is useful for identifying the subcellular localizations of proteins of interest. However, previous systems for detecting protein subcellular localization information used only shallow syntactic parsers, and showed poor performance. Thus, there remains a need to use a full syntactic parser and to apply deep linguistic knowledge to the analysis of text for protein subcellular localization information. In addition, we have attempted to use semantic information from the WordNet thesaurus. To improve performance in detecting protein subcellular localization information, this paper proposes a three-step method based on a full syntactic dependency parser and WordNet thesaurus. In the first step, we constructed syntactic dependency paths from each protein to its location candidate, and then converted the syntactic dependency paths into dependency trees. In the second step, we retrieved root information of the syntactic dependency trees. In the final step, we extracted syn-semantic patterns of protein subtrees and location subtrees. From the root and subtree nodes, we extracted syntactic category and syntactic direction as syntactic information, and synset offset of the WordNet thesaurus as semantic information. According to the root information and syn-semantic patterns of subtrees from the training data, we extracted (protein, localization) pairs from the test sentences. Even with no biomolecular knowledge, our method showed reasonable performance in experimental results using Medline abstract data. Our proposed method gave an F-measure of 74.53% for training data and 58.90% for test data, significantly outperforming previous methods, by 12-25%.

Ontology Construction and Its Application to Disambiguate Word Senses (온톨로지 구축 및 단어 의미 중의성 해소에의 활용)

  • Kang, Sin-Jae
    • The KIPS Transactions:PartB
    • /
    • v.11B no.4
    • /
    • pp.491-500
    • /
    • 2004
  • This paper presents an ontology construction method using various computational language resources, and an ontology-based word sense disambiguation method. In order to acquire a reasonably practical ontology the Kadokawa thesaurus is extended by inserting additional semantic relations into its hierarchy, which are classified as case relations and other semantic relations. To apply the ontology to disambiguate word senses, we apply the previously-secured dictionary information to select the correct senses of some ambiguous words with high precision, and then use the ontology to disambiguate the remaining ambiguous words. The mutual information between concepts in the ontology was calculated before using the ontology as knowledge for disambiguating word senses. If mutual information is regarded as a weight between ontology concepts, the ontology can be treated as a graph with weighted edges, and then we locate the weighted path from one concept to the other concept. In our practical machine translation system, our word sense disambiguation method achieved a 9% improvement over methods which do not use ontology for Korean translation.

Cross-Enrichment of the Heterogenous Ontologies Through Mapping Their Conceptual Structures: the Case of Sejong Semantic Classes and KorLexNoun 1.5 (이종 개념체계의 상호보완방안 연구 - 세종의미부류와 KorLexNoun 1.5 의 사상을 중심으로)

  • Bae, Sun-Mee;Yoon, Ae-Sun
    • Language and Information
    • /
    • v.14 no.1
    • /
    • pp.165-196
    • /
    • 2010
  • The primary goal of this paper is to propose methods of enriching two heterogeneous ontologies: Sejong Semantic Classes (SJSC) and KorLexNoun 1.5 (KLN). In order to achieve this goal, this study introduces the pros and cons of two ontologies, and analyzes the error patterns found during the fine-grained manual mapping processes between them. Error patterns can be classified into four types: (1) structural defectives involved in node branching, (2) errors in assigning the semantic classes, (3) deficiency in providing linguistic information, and (4) lack of the lexical units representing specific concepts. According to these error patterns, we propose different solutions in order to correct the node branching defectives and the semantic class assignment, to complement the deficiency of linguistic information, and to increase the number of lexical units suitably allotted to their corresponding concepts. Using the results of this study, we can obtain more enriched ontologies by correcting the defects and errors in each ontology, which will lead to the enhancement of practicality for syntactic and semantic analysis.

  • PDF

Identifying Similar Overseas Patent Using Word2Vec-Based Semantic Text Analytics (Word2Vec 학습을 통한 의미 기반 해외 유사 특허 검색 방안)

  • Paek, Minji;Kim, Namgyu
    • Journal of Information Technology Services
    • /
    • v.17 no.2
    • /
    • pp.129-142
    • /
    • 2018
  • Recently, the number of patent applications have been increasing rapidly every year as the importance of protecting intellectual property rights becomes more important. Patents must be inventive and have novelty. Especially, the novelty implies that the corresponding invention is not the same as the previous invention. To confirm the novelty, prior art search must be conducted before and after the application. The target of prior art search should include not only Korean patents but also foreign patents. Search of foreign patents should be supported by multilingual search techniques. However, a dictionary-based naive approach shows a limitation because some technical concepts are represented in different terms according to each nation. For example, a Korean term and a Japanese term may not be synonym even though they represent the same technical concept. In this paper, we propose a new method to map semantic similarity between technical terms in Korean patents and Japanese patents. To investigate different representations in each nation for the same technical concept, we identified and analyzed pairs of patents those are mutually connected with priority claim relationship. By performing an experiment with real-world data, we showed that our approach can reveal semantically similar technical terms in other language successfully.

Constructing Ontology based on Korean Parts of Speech and Applying to Vehicle Services (한국어 품사 기반 온톨로지 구축 방법 및 차량 서비스 적용 방안)

  • Cha, Si-Ho;Ryu, Minwoo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.17 no.4
    • /
    • pp.103-108
    • /
    • 2021
  • Knowledge graph is a technology that improves search results by using semantic information based on various resources. Therefore, due to these advantages, the knowledge graph is being defined as one of the core research technologies to provide AI-based services recently. However, in the case of the knowledge graph, since the form of knowledge collected from various service domains is defined as plain text, it is very important to be able to analyze the text and understand its meaning. Recently, various lexical dictionaries have been proposed together with the knowledge graph, but since most lexical dictionaries are defined in a language other than Korean, there is a problem in that the corresponding language dictionary cannot be used when providing a Korean knowledge service. To solve this problem, this paper proposes an ontology based on the parts of speech of Korean. The proposed ontology uses 9 parts of speech in Korean to enable the interpretation of words and their semantic meaning through a semantic connection between word class and word class. We also studied various scenarios to apply the proposed ontology to vehicle services.

A WordNet-based Open Market Category Search System for Efficient Goods Registration (효율적인 상품등록을 위한 워드넷 기반의 오픈마켓 카테고리 검색 시스템)

  • Hong, Myung-Duk;Kim, Jang-Woo;Jo, Geun-Sik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.9
    • /
    • pp.17-27
    • /
    • 2012
  • Open Market is one of the key factors to accelerate the profit. Usually retailers sell items in several Open Market. One of the challenges for retailers is to assign categories of items with different classification systems. In this research, we propose an item category recommendation method to support appropriate products category registration. Our recommendations are based on semantic relation between existing and any other Open Market categorization. In order to analyze correlations of categories, we use Morpheme analysis, Korean Wiki Dictionary, WordNet and Google Translation API. Our proposed method recommends a category, which is most similar to a guide word by measuring semantic similarity. The experimental results show that, our system improves the system accuracy in term of search category, and retailers can easily select the appropriate categories from our proposed method.

Target Word Selection Disambiguation using Untagged Text Data in English-Korean Machine Translation (영한 기계 번역에서 미가공 텍스트 데이터를 이용한 대역어 선택 중의성 해소)

  • Kim Yu-Seop;Chang Jeong-Ho
    • The KIPS Transactions:PartB
    • /
    • v.11B no.6
    • /
    • pp.749-758
    • /
    • 2004
  • In this paper, we propose a new method utilizing only raw corpus without additional human effort for disambiguation of target word selection in English-Korean machine translation. We use two data-driven techniques; one is the Latent Semantic Analysis(LSA) and the other the Probabilistic Latent Semantic Analysis(PLSA). These two techniques can represent complex semantic structures in given contexts like text passages. We construct linguistic semantic knowledge by using the two techniques and use the knowledge for target word selection in English-Korean machine translation. For target word selection, we utilize a grammatical relationship stored in a dictionary. We use k- nearest neighbor learning algorithm for the resolution of data sparseness Problem in target word selection and estimate the distance between instances based on these models. In experiments, we use TREC data of AP news for construction of latent semantic space and Wail Street Journal corpus for evaluation of target word selection. Through the Latent Semantic Analysis methods, the accuracy of target word selection has improved over 10% and PLSA has showed better accuracy than LSA method. finally we have showed the relatedness between the accuracy and two important factors ; one is dimensionality of latent space and k value of k-NT learning by using correlation calculation.