• Title/Summary/Keyword: word network analysis

Search Result 381, Processing Time 0.029 seconds

Analysis of preference convergence by analyzing search words for oralcare products : Using the Google trend (구강관리용품에 대한 검색어 분석을 통한 선호도 융합 분석 : 구글트렌드를 이용하여)

  • Moon, Kyung-Hui;Kim, Jang-Mi
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.6
    • /
    • pp.59-64
    • /
    • 2019
  • This study used the Google Trends site to analyze selection information that users expect from prominent Toothbrushes and Toothpastes through related search keywords that users wanted to obtain. From 2006 to 2018(sep), searches for Toothbrushes and Toothpastes were arranged in the order of popularity of related searched words. The total number of searches words exposed was each 25, total 325 collected. The analysis was conducted using two methods, first, by search function. second, by a word network using a Big Data program. The study has shown that toothbrushes there are high expectations for brands, toothpaste there are high expectations in the function. In order to increase the motivation for oral health education, it is recommended to use and provide knowledge about the brand of toothbrushes and Toothpastes by the function.

Identification of Strategic Fields for Developing Smart City in Busan Using Text Mining (텍스트 마이닝을 이용한 스마트 도시계획 수립을 위한 전략분야 도출연구: 부산 사례를 바탕으로)

  • Chae, Yoonsik;Lee, Sanghoon
    • Journal of Digital Convergence
    • /
    • v.16 no.11
    • /
    • pp.1-15
    • /
    • 2018
  • The purpose of this study is to analyze bibliographic information of Busan and other cities' reports for urban development initiative and identify the strategic fields for future smart city plan. Text mining method is used in this study to extract keywords and identify the characteristics and patterns of information in urban development reports. As a result, in earlier stage, Busan city focused on service creation for industrial development but there are lack of discussions on the linkage of information systems with ICT technology. However, recent urban planning in Busan contained various contents related to integrated connections of infrastructure, ICT system, and operation management of city in the specific fields of traffic, tourism, welfare, port/logistics, culture/MICE. This results of study is expected to provide policy implications for planning the future urban initiatives of smart city development.

A Suggestion and an analysis on Changes on trend of the 'Virtual Tourism' before and after the Covid 19 Crisis using Textmining Method (텍스트 마이닝을 활용한 '가상관광'의 코로나19 전후 트렌드 분석 및 방향성 제언)

  • Sung, Yun-A
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.4
    • /
    • pp.155-161
    • /
    • 2022
  • The outbreak of the Covid 19 increased the interest on the 'Virtual Tourism. In this research the key word related to "Virtual Tourism" was collected through the search engine and was analyzed through the data mining method such as Log-odds ratio, Frequency, and network analysis. It is clear that the information and communication dependency increased in the field of "Virtual Tourism" after Covid 19 and also the trend have changed from "securement of the contents diversity" to "project related to economic recovery." Since the demands for the "Virtual Reality" such as metaverse is increasing, there should be an economic and circular structure in which the government establishing a related policy and the funding plan based on the research, local government and the private companies planning and producing discriminate contents focusing on AISAS(Attension, Interest, Search, Action, Share) aand the research institutions and universities developing, applying, assessing and commercializing the technology.

Study of Policy on Seowon's Preservation·Support : Focusing on Big Data Analysis on Laws (한국 서원의 보존·지원 정책에 관한 연구 : 법률에 대한 빅데이터 분석을 중심으로)

  • Bang, Mee Young
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.5
    • /
    • pp.875-883
    • /
    • 2023
  • In Korea, the number of preservation and management entities to connect the traditional cultural heritage to next generations is rapidly decreasing. Building an infrastructure to pass on traditional cultural heritage to the next generation and to pay attention to the preservation and management of the next generation is important including the 'Seowon', a World Cultural Heritage listed by UNESCO. This study is based on the laws that regulates the preservation and support of traditional cultural assets and 'Seowon, through Big Data analysis techniques. The main keywords in each law were extracted, schematized, and a mutual Word Network was constructed and policy advice was derived. As policy advice, it is necessary to establish and implement policies to nurture and support businesses specialized in the region for the preservation·utilization, preservation·management and preservation·support of Seowons.

A Study on Research Trends of Library Science and Information Science Through Analyzing Subject Headings of Doctoral Dissertations Recently Published in the U.S. (학위논문 분석을 통한 미국 도서관학 및 정보과학 최근 연구 동향에 관한 연구)

  • Kim, Hyunjung
    • Journal of the Korean Society for information Management
    • /
    • v.35 no.3
    • /
    • pp.11-39
    • /
    • 2018
  • The study examines the research trends of doctoral dissertations in Library Science and Information Science published in the U.S. for the last 5 years. Data collected from PQDT Global includes 1,016 doctoral dissertations containing "Library Science" or "Information Science" as subject headings, and keywords extracted from those dissertations were used for a network analysis, which helps identifying the intellectual structure of the dissertations. Also, the analysis using 103 subject heading keywords resulted in various centrality measures, including triangle betweenness centrality and nearest neighbor centrality, as well as 26 clusters of associated subject headings. The most frequently studied subjects include computer-related subjects, education-related subjects, and communication-related subjects, and a cluster with information science as the most central subject contains most of the computer-related keywords, while a cluster with library science as the most central subject contains many of the education-related keywords. Other related subjects include various user groups for user studies, and subjects related to information systems such as management, economics, geography, and biomedical engineering.

The Research Trend and Social Perceptions Related with the Tap Water in South Korea (수돗물 이용에 대한 국내 연구동향과 사회적 인식)

  • Kim, Ji Yoon;Do, Yuno;Joo, Gea-Jae;Kim, Eunhee;Park, Eun-Young;Lee, Sang-Hyup;Baek, Myeong Su
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.3
    • /
    • pp.208-214
    • /
    • 2016
  • We analyzed research trend and public perception related with tap water to identify major factors affecting low consumption of tap water. 805 research articles were collected for text mining analysis and 1,000 on-line questionnaires were surveyed to find social variables influencing tap water intake. Based on the word network analysis, research topics were divided into 4 major categories, 1) drinking water quality, 2) water fluoridation, 3) residual chlorine, and 4) micro-organism management. Compared with these major research topics, scientific studies of drinking behavior, or social perception were rather limited. 22.4% of total respondents used tap water as drinking water source, and only 1% drank tap water without further treatments (i.e. boiling, filtering). Experience of quality control report (B=0.392, p=0.046) and level of policy trust (B=1.002, p<0.0001) were influential factors on tap water drinking behavior. Age (B=0.020, p=0.002) and gender (B= - 1.843, p<0.0001) also showed significant difference. To increase the frequency of drinking the tap water by social members, the more scientific information of tap water quality and the water policy management should be clearly shared with social members.

An analysis of the signaling effect of FOMC statements (미 연준 통화정책방향 의결문의 시그널링 효과 분석)

  • Woo, Shinwook;Chang, Youngjae
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.3
    • /
    • pp.321-334
    • /
    • 2020
  • The US Federal Reserve (Fed) has decided to cut interest rates. When we look at the expression of the FOMC statements at the time of policy change period we can understand that Fed has been communicating with markets through a change of word selection. However, there is a criticism that the method of analyzing the expression of the decision sentence through the context can be subjective and limited in qualitative analysis. In this paper, we evaluate the signaling effect of FOMC statements based on previous research. We analyze decision making characteristics from the viewpoint of text mining and try to predict future policy trend changes by capturing changes in expressions between statements. For this purpose, a decision tree and neural network models are used. As a result of the analysis, it can be judged that the discrepancy indicators between statements could be used to predict the policy change in the future and that the US Federal Reserve has systematically implemented policy signaling through the policy statements.

Trends in the Use of Artificial Intelligence in Medical Image Analysis (의료영상 분석에서 인공지능 이용 동향)

  • Lee, Gil-Jae;Lee, Tae-Soo
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.4
    • /
    • pp.453-462
    • /
    • 2022
  • In this paper, the artificial intelligence (AI) technology used in the medical image analysis field was analyzed through a literature review. Literature searches were conducted on PubMed, ResearchGate, Google and Cochrane Review using the key word. Through literature search, 114 abstracts were searched, and 98 abstracts were reviewed, excluding 16 duplicates. In the reviewed literature, AI is applied in classification, localization, disease detection, disease segmentation, and fit degree of registration images. In machine learning (ML), prior feature extraction and inputting the extracted feature values into the neural network have disappeared. Instead, it appears that the neural network is changing to a deep learning (DL) method with multiple hidden layers. The reason is thought to be that feature extraction is processed in the DL process due to the increase in the amount of memory of the computer, the improvement of the calculation speed, and the construction of big data. In order to apply the analysis of medical images using AI to medical care, the role of physicians is important. Physicians must be able to interpret and analyze the predictions of AI algorithms. Additional medical education and professional development for existing physicians is needed to understand AI. Also, it seems that a revised curriculum for learners in medical school is needed.

Introducing Keyword Bibliographic Coupling Analysis (KBCA) for Identifying the Intellectual Structure (지적구조 규명을 위한 키워드서지결합분석 기법에 관한 연구)

  • Lee, Jae Yun;Chung, EunKyung
    • Journal of the Korean Society for information Management
    • /
    • v.39 no.1
    • /
    • pp.309-330
    • /
    • 2022
  • Intellectual structure analysis, which quantitatively identifies the structure, characteristics, and sub-domains of fields, has rapidly increased in recent years. Analysis techniques traditionally used to conduct intellectual structure analysis research include bibliographic coupling analysis, co-citation analysis, co-occurrence analysis, and author bibliographic coupling analysis. This study proposes a novel intellectual structure analysis method, Keyword Bibliographic Coupling Analysis (KBCA). The Keyword Bibliographic Coupling Analysis (KBCA) is a variation of the author bibliographic coupling analysis, which targets keywords instead of authors. It calculates the number of references shared by two keywords to the degree of coupling between the two keywords. A set of 1,366 articles in the field of 'Open Data' searched in the Web of Science were collected using the proposed KBCA technique. A total of 63 keywords that appeared more than 7 times, extracted from 1,366 article sets, were selected as core keywords in the open data field. The intellectual structure presented by the KBCA technique with 63 key keywords identified the main areas of open government and open science and 10 sub-areas. On the other hand, the intellectual structure network of co-occurrence word analysis was found to be insufficient in the overall structure and detailed domain structure. This result can be considered because the KBCA sufficiently measures the relationship between keywords using the degree of bibliographic coupling.

Comparative Study of Anomaly Detection Accuracy of Intrusion Detection Systems Based on Various Data Preprocessing Techniques (다양한 데이터 전처리 기법 기반 침입탐지 시스템의 이상탐지 정확도 비교 연구)

  • Park, Kyungseon;Kim, Kangseok
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.11
    • /
    • pp.449-456
    • /
    • 2021
  • An intrusion detection system is a technology that detects abnormal behaviors that violate security, and detects abnormal operations and prevents system attacks. Existing intrusion detection systems have been designed using statistical analysis or anomaly detection techniques for traffic patterns, but modern systems generate a variety of traffic different from existing systems due to rapidly growing technologies, so the existing methods have limitations. In order to overcome this limitation, study on intrusion detection methods applying various machine learning techniques is being actively conducted. In this study, a comparative study was conducted on data preprocessing techniques that can improve the accuracy of anomaly detection using NGIDS-DS (Next Generation IDS Database) generated by simulation equipment for traffic in various network environments. Padding and sliding window were used as data preprocessing, and an oversampling technique with Adversarial Auto-Encoder (AAE) was applied to solve the problem of imbalance between the normal data rate and the abnormal data rate. In addition, the performance improvement of detection accuracy was confirmed by using Skip-gram among the Word2Vec techniques that can extract feature vectors of preprocessed sequence data. PCA-SVM and GRU were used as models for comparative experiments, and the experimental results showed better performance when sliding window, skip-gram, AAE, and GRU were applied.