This study used the Google Trends site to analyze selection information that users expect from prominent Toothbrushes and Toothpastes through related search keywords that users wanted to obtain. From 2006 to 2018(sep), searches for Toothbrushes and Toothpastes were arranged in the order of popularity of related searched words. The total number of searches words exposed was each 25, total 325 collected. The analysis was conducted using two methods, first, by search function. second, by a word network using a Big Data program. The study has shown that toothbrushes there are high expectations for brands, toothpaste there are high expectations in the function. In order to increase the motivation for oral health education, it is recommended to use and provide knowledge about the brand of toothbrushes and Toothpastes by the function.
The purpose of this study is to analyze bibliographic information of Busan and other cities' reports for urban development initiative and identify the strategic fields for future smart city plan. Text mining method is used in this study to extract keywords and identify the characteristics and patterns of information in urban development reports. As a result, in earlier stage, Busan city focused on service creation for industrial development but there are lack of discussions on the linkage of information systems with ICT technology. However, recent urban planning in Busan contained various contents related to integrated connections of infrastructure, ICT system, and operation management of city in the specific fields of traffic, tourism, welfare, port/logistics, culture/MICE. This results of study is expected to provide policy implications for planning the future urban initiatives of smart city development.
The outbreak of the Covid 19 increased the interest on the 'Virtual Tourism. In this research the key word related to "Virtual Tourism" was collected through the search engine and was analyzed through the data mining method such as Log-odds ratio, Frequency, and network analysis. It is clear that the information and communication dependency increased in the field of "Virtual Tourism" after Covid 19 and also the trend have changed from "securement of the contents diversity" to "project related to economic recovery." Since the demands for the "Virtual Reality" such as metaverse is increasing, there should be an economic and circular structure in which the government establishing a related policy and the funding plan based on the research, local government and the private companies planning and producing discriminate contents focusing on AISAS(Attension, Interest, Search, Action, Share) aand the research institutions and universities developing, applying, assessing and commercializing the technology.
The Journal of the Convergence on Culture Technology
/
v.9
no.5
/
pp.875-883
/
2023
In Korea, the number of preservation and management entities to connect the traditional cultural heritage to next generations is rapidly decreasing. Building an infrastructure to pass on traditional cultural heritage to the next generation and to pay attention to the preservation and management of the next generation is important including the 'Seowon', a World Cultural Heritage listed by UNESCO. This study is based on the laws that regulates the preservation and support of traditional cultural assets and 'Seowon, through Big Data analysis techniques. The main keywords in each law were extracted, schematized, and a mutual Word Network was constructed and policy advice was derived. As policy advice, it is necessary to establish and implement policies to nurture and support businesses specialized in the region for the preservation·utilization, preservation·management and preservation·support of Seowons.
Journal of the Korean Society for information Management
/
v.35
no.3
/
pp.11-39
/
2018
The study examines the research trends of doctoral dissertations in Library Science and Information Science published in the U.S. for the last 5 years. Data collected from PQDT Global includes 1,016 doctoral dissertations containing "Library Science" or "Information Science" as subject headings, and keywords extracted from those dissertations were used for a network analysis, which helps identifying the intellectual structure of the dissertations. Also, the analysis using 103 subject heading keywords resulted in various centrality measures, including triangle betweenness centrality and nearest neighbor centrality, as well as 26 clusters of associated subject headings. The most frequently studied subjects include computer-related subjects, education-related subjects, and communication-related subjects, and a cluster with information science as the most central subject contains most of the computer-related keywords, while a cluster with library science as the most central subject contains many of the education-related keywords. Other related subjects include various user groups for user studies, and subjects related to information systems such as management, economics, geography, and biomedical engineering.
Kim, Ji Yoon;Do, Yuno;Joo, Gea-Jae;Kim, Eunhee;Park, Eun-Young;Lee, Sang-Hyup;Baek, Myeong Su
Korean Journal of Ecology and Environment
/
v.49
no.3
/
pp.208-214
/
2016
We analyzed research trend and public perception related with tap water to identify major factors affecting low consumption of tap water. 805 research articles were collected for text mining analysis and 1,000 on-line questionnaires were surveyed to find social variables influencing tap water intake. Based on the word network analysis, research topics were divided into 4 major categories, 1) drinking water quality, 2) water fluoridation, 3) residual chlorine, and 4) micro-organism management. Compared with these major research topics, scientific studies of drinking behavior, or social perception were rather limited. 22.4% of total respondents used tap water as drinking water source, and only 1% drank tap water without further treatments (i.e. boiling, filtering). Experience of quality control report (B=0.392, p=0.046) and level of policy trust (B=1.002, p<0.0001) were influential factors on tap water drinking behavior. Age (B=0.020, p=0.002) and gender (B= - 1.843, p<0.0001) also showed significant difference. To increase the frequency of drinking the tap water by social members, the more scientific information of tap water quality and the water policy management should be clearly shared with social members.
The US Federal Reserve (Fed) has decided to cut interest rates. When we look at the expression of the FOMC statements at the time of policy change period we can understand that Fed has been communicating with markets through a change of word selection. However, there is a criticism that the method of analyzing the expression of the decision sentence through the context can be subjective and limited in qualitative analysis. In this paper, we evaluate the signaling effect of FOMC statements based on previous research. We analyze decision making characteristics from the viewpoint of text mining and try to predict future policy trend changes by capturing changes in expressions between statements. For this purpose, a decision tree and neural network models are used. As a result of the analysis, it can be judged that the discrepancy indicators between statements could be used to predict the policy change in the future and that the US Federal Reserve has systematically implemented policy signaling through the policy statements.
In this paper, the artificial intelligence (AI) technology used in the medical image analysis field was analyzed through a literature review. Literature searches were conducted on PubMed, ResearchGate, Google and Cochrane Review using the key word. Through literature search, 114 abstracts were searched, and 98 abstracts were reviewed, excluding 16 duplicates. In the reviewed literature, AI is applied in classification, localization, disease detection, disease segmentation, and fit degree of registration images. In machine learning (ML), prior feature extraction and inputting the extracted feature values into the neural network have disappeared. Instead, it appears that the neural network is changing to a deep learning (DL) method with multiple hidden layers. The reason is thought to be that feature extraction is processed in the DL process due to the increase in the amount of memory of the computer, the improvement of the calculation speed, and the construction of big data. In order to apply the analysis of medical images using AI to medical care, the role of physicians is important. Physicians must be able to interpret and analyze the predictions of AI algorithms. Additional medical education and professional development for existing physicians is needed to understand AI. Also, it seems that a revised curriculum for learners in medical school is needed.
Journal of the Korean Society for information Management
/
v.39
no.1
/
pp.309-330
/
2022
Intellectual structure analysis, which quantitatively identifies the structure, characteristics, and sub-domains of fields, has rapidly increased in recent years. Analysis techniques traditionally used to conduct intellectual structure analysis research include bibliographic coupling analysis, co-citation analysis, co-occurrence analysis, and author bibliographic coupling analysis. This study proposes a novel intellectual structure analysis method, Keyword Bibliographic Coupling Analysis (KBCA). The Keyword Bibliographic Coupling Analysis (KBCA) is a variation of the author bibliographic coupling analysis, which targets keywords instead of authors. It calculates the number of references shared by two keywords to the degree of coupling between the two keywords. A set of 1,366 articles in the field of 'Open Data' searched in the Web of Science were collected using the proposed KBCA technique. A total of 63 keywords that appeared more than 7 times, extracted from 1,366 article sets, were selected as core keywords in the open data field. The intellectual structure presented by the KBCA technique with 63 key keywords identified the main areas of open government and open science and 10 sub-areas. On the other hand, the intellectual structure network of co-occurrence word analysis was found to be insufficient in the overall structure and detailed domain structure. This result can be considered because the KBCA sufficiently measures the relationship between keywords using the degree of bibliographic coupling.
KIPS Transactions on Software and Data Engineering
/
v.10
no.11
/
pp.449-456
/
2021
An intrusion detection system is a technology that detects abnormal behaviors that violate security, and detects abnormal operations and prevents system attacks. Existing intrusion detection systems have been designed using statistical analysis or anomaly detection techniques for traffic patterns, but modern systems generate a variety of traffic different from existing systems due to rapidly growing technologies, so the existing methods have limitations. In order to overcome this limitation, study on intrusion detection methods applying various machine learning techniques is being actively conducted. In this study, a comparative study was conducted on data preprocessing techniques that can improve the accuracy of anomaly detection using NGIDS-DS (Next Generation IDS Database) generated by simulation equipment for traffic in various network environments. Padding and sliding window were used as data preprocessing, and an oversampling technique with Adversarial Auto-Encoder (AAE) was applied to solve the problem of imbalance between the normal data rate and the abnormal data rate. In addition, the performance improvement of detection accuracy was confirmed by using Skip-gram among the Word2Vec techniques that can extract feature vectors of preprocessed sequence data. PCA-SVM and GRU were used as models for comparative experiments, and the experimental results showed better performance when sliding window, skip-gram, AAE, and GRU were applied.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.