The speech recognition system works well in general indoor environment. However, the recognition performance is dramatically decreased when the system is used in the real environment because of the several noises. In this paper we proposed CSFN-CMVN to improve the recognition performance of the existing CSFN(Cepstral distance based SFN). The CSFN-CMVN method is a combined method of cepstral normalization with CSFN that normalizes silence features using cepstral euclidean distance to classify speech/silence for better performance. From the test results using Aurora 2.0 DB, we could find out that our proposed CSFN-CMVN improves about 7% of more average word accuracy in all the test sets comparing with the typical silence features normalization SFN-I. We can also get improved accuracy of 6% and 5% respectively in compared tests with the conventional SFN-II and CSFN, showing the effectiveness of our proposed method.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.8
no.6
/
pp.36-45
/
2009
Recently, there are interested in the automatic traffic flowing and accident detection using various low level information from video in the road. In this paper, the automatic traffic flowing and algorithm, and application of traffic accident detection using traffic management systems are studied. To achieve these purposes, the spatio-temporal relation models using topological and directional relations have been made, then a matching of the proposed models with the directional motion verbs proposed by Levin's verbs of inherently directed motion is applied. Finally, the synonym and antonym are inserted by using WordNet. For the similarity measuring between proposed modeling and trajectory of moving object in the video, the objects are extracted, and then compared with the trajectories of moving objects by the proposed modeling. Because of the different features with each proposed modeling, the rules that have been generated will be applied to the similarity measurement by TSR (Tangent Space Representation). Through this research, we can extend our results to the automatic accident detection of vehicle using CCTV.
There have been many studies on speaker normalization which aims to minimize the effects of speaker's vocal tract length on the recognition performance of the speaker independent speech recognition system. In this paper, we propose a simple vector quantizer based linear warping speaker normalization method based on the observation that the vector quantizer can be successfully used for speaker verification. For this purpose, we firstly generate an optimal codebook which will be used as the basis of the speaker normalization, and then the warping factor of the unknown speaker will be extracted by comparing the feature vectors and the codebook. Finally, the extracted warping factor is used to linearly warp the Mel scale filter bank adopted in the course of MFCC calculation. To test the performance of the proposed method, a series of recognition experiments are conducted on discrete HMM with thirteen mono-syllabic Korean number utterances. The results showed that about 29% of word error rate can be reduced, and that the proposed warping factor extraction method is useful due to its simplicity compared to other line search warping methods.
Park, Soobin;Choi, Dojin;Yoo, Jaesoo;Bok, Kyoungsoo
The Journal of the Korea Contents Association
/
v.20
no.2
/
pp.96-104
/
2020
As consumers' consumption activities become more active due to the activation of online shopping malls, companies are conducting item trend analyses to boost sales. The existing item trend analysis methods are analyzed by considering only the activities of users in online shopping mall services, making it difficult to identify trends for new items without purchasing history. In this paper, we propose a trend analysis method that combines data in online shopping mall services and social network data to analyze item trends in users and potential customers in shopping malls. The proposed method uses the user's activity logs for in-service data and utilizes hot topics through word set extraction from social network data set to reflect potential users' interests. Finally, the item trend change is detected over time by utilizing the item index and the number of mentions in the social network. We show the superiority of the proposed method through performance evaluations using social network data.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.11
no.5
/
pp.2484-2498
/
2017
Various types of social media make the people share their personal experience in different ways. In some social networking sites. Some users post their reviews, some users can support these reviews with comments, and some users just rate the reviews as kind of support or not. Unfortunately, there is rare explicit negative comments towards other reviews. This means if there is a link between two users, it must be positive link. Apparently, the negative link is invisible in these social network. Or in other word, the negative links are redundant to positive links. In this work, we first discuss the feature extraction from social media data and propose new method to compute the distance between each pair of comments or reviews on social media. Then we investigate whether we can predict negative links via regression analysis when only positive links are manifested from social media data. In particular, we provide a principled way to mathematically incorporate multi-facet data in a novel framework, Constructing Negative Links, CsNL to predict negative links for discovering the hidden information. Additionally, we investigate the ways of solution to general negative link predication problems with CsNL and its extension. Experiments are performed on real-world data and results show that negative links is predictable with multi-facet of social media data by the proposed framework CsNL. Essentially, high prediction accuracy suggests that negative links are redundant to positive links. Further experiments are performed to evaluate coefficients on different kernels. The results show that user generated content dominates the prediction performance of CsNL.
Due to speech recognition problems in noisy environment, Audio Visual Speech Recognition (AVSR) system, which combines speech information and visual information, has been proposed since the mid-1990s,. and lip reading have played significant role in the AVSR System. This study aims to enhance recognition rate of utterance word using only lip shape detection for efficient AVSR system. After preprocessing for lip region detection, Convolution Neural Network (CNN) techniques are applied for utterance period detection and lip shape feature vector extraction, and Hidden Markov Models (HMMs) are then used for the recognition. As a result, the utterance period detection results show 91% of success rates, which are higher performance than general threshold methods. In the lip reading recognition, while user-dependent experiment records 88.5%, user-independent experiment shows 80.2% of recognition rates, which are improved results compared to the previous studies.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
1999.11a
/
pp.224-229
/
1999
In the field of speech recognition, the research area can be classified into the following two categories: one which is concerned with the development of phoneme-level recognition system, the other with the efficiency of word-level recognition system. The resonable phoneme-level recognition system should detect the phonemic boundaries appropriately and have the improved recognition abilities all the more. The traditional LPC methods detect the phoneme boundaries using Itakura-Saito method which measures the distance between LPC of the standard phoneme data and that of the target speech frame. The MFCC methods which treat spectral transitions as the phonemic boundaries show the lack of adaptability. In this paper, we present new speech recognition system which uses auto-correlation method in the phonemic boundary detection process and the multi-layered Feed-Forward neural network in the recognition process respectively. The proposed system outperforms the traditional methods in the sense of adaptability and another advantage of the proposed system is that feature-extraction part is independent of the recognition process. The results show that frame-unit phonemic recognition system should be possibly implemented.
KIPS Transactions on Software and Data Engineering
/
v.1
no.1
/
pp.69-74
/
2012
Many internet users attempt to focus on the issues which have posted on social network services in a very short time. When some social big issue or event occurred, it will affect the number of comments and retweet on that day in twitter. In this paper, we propose the method of extracting core events based on timeline analysis, sentiment feature and retweet information in twitter data. To validate our method, we have compared the methods using only the frequency of words, word frequency with sentiment analysis, using only chi-square method and using sentiment analysis with chi-square method. For justification of the proposed approach, we have evaluated accuracy of correct answers in top 10 results. The proposed method achieved 94.9% performance. The experimental results show that the proposed method is effective for extracting core events in twitter corpus.
Journal of the Korea Society of Computer and Information
/
v.19
no.11
/
pp.159-166
/
2014
In this paper, we examine the role of emotional acoustic cues including both prosody and voice quality parameters for the modification of a word sense. For the extraction of prosody parameters and voice quality parameters, we used 60 pieces of speech data spoken by six speakers with five different emotional states. We analyzed eight different emotional acoustic cues, and used a discriminant analysis technique in order to find the dominant sequence of acoustic cues. As a result, we found that anger has a close relation with intensity level and 2nd formant bandwidth range; joy has a relative relation with the position of 2nd and 3rd formant values and intensity level; sadness has a strong relation only with prosody cues such as intensity level and pitch level; and fear has a relation with pitch level and 2nd formant value with its bandwidth range. These findings can be used as the guideline for find-tuning an emotional spoken language generation system, because these distinct sequences of acoustic cues reveal the subtle characteristics of each emotional state.
The present study was performed to investigate the general research trends of dyslexia and learning disability to explore the centrality of related variables though analysis of keyword networks. Data were collected from ten years articles research information sharing service(RISS) which is provided by korea education and research information service(KERIS). The research subjects selected for the analysis were keyword cleansing work, extraction major keyword using KrKwic program and using NodeXL program to Visualize the center of connection between keyword. The results of this were as follows. First, totally 72 of keyword were extracted from keyword cleansing process and among those keyword. major keywords included learning disability, dyslexia, RTI. Second, analysis of the betweenness centrality of dyslexia and learing disabilities shows that learning disabilities are a key word that has been addressed in the study of dyslexia and learning disabilities in korea. The results of these studies suggest a method of analyzing trends in qualitative and qualitative analysis in relation to dyslexia and learning disorder.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.