• Title/Summary/Keyword: word based classification

Search Result 224, Processing Time 0.02 seconds

A Deeping Learning-based Article- and Paragraph-level Classification

  • Kim, Euhee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.11
    • /
    • pp.31-41
    • /
    • 2018
  • Text classification has been studied for a long time in the Natural Language Processing field. In this paper, we propose an article- and paragraph-level genre classification system using Word2Vec-based LSTM, GRU, and CNN models for large-scale English corpora. Both article- and paragraph-level classification performed best in accuracy with LSTM, which was followed by GRU and CNN in accuracy performance. Thus, it is to be confirmed that in evaluating the classification performance of LSTM, GRU, and CNN, the word sequential information for articles is better than the word feature extraction for paragraphs when the pre-trained Word2Vec-based word embeddings are used in both deep learning-based article- and paragraph-level classification tasks.

Analysis of Word Based Classification of U.S. Public Libraries and its Implications (주제어 기반 분류에 관한 연구 - 미국 공공도서관의 사례를 중심으로 -)

  • Baek, Ji-Won
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.44 no.4
    • /
    • pp.179-201
    • /
    • 2010
  • This study aims to analyze the word based classification used in U.S. public libraries and their implications for Korean libraries. For this purpose, eleven U.S. public libraries using the word based classification system were selected and the specific classification types, their motivation, collection size, methods used in the conversion from DDC, and pros and cons were examined. The result of the analysis shows that the word based classification system may be categorized into the two types: Dewey-free or Dewey-lite and its application methods are different case by case. As a result, the positive impacts and implied problems of the word based classification system for library use and library operation were examined. In addition, the new system's implications on the Korean libraries were also discussed.

An Algorithm for Text Image Watermarking based on Word Classification (단어 분류에 기반한 텍스트 영상 워터마킹 알고리즘)

  • Kim Young-Won;Oh Il-Seok
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.8
    • /
    • pp.742-751
    • /
    • 2005
  • This paper proposes a novel text image watermarking algorithm based on word classification. The words are classified into K classes using simple features. Several adjacent words are grouped into a segment. and the segments are also classified using the word class information. The same amount of information is inserted into each of the segment classes. The signal is encoded by modifying some inter-word spaces statistics of segment classes. Subjective comparisons with conventional word-shift algorithms are presented under several criteria.

Question Classification Based on Word Association for Question and Answer Archives (질문대답 아카이브에서 어휘 연관성을 이용한 질문 분류)

  • Jin, Xueying;Lee, Kyung-Soon
    • The KIPS Transactions:PartB
    • /
    • v.17B no.4
    • /
    • pp.327-332
    • /
    • 2010
  • Word mismatch is the most significant problem that causes low performance in question classification, whose questions consist of only two or three words that expressed in many different ways. So, it is necessary to apply word association in question classification. In this paper, we propose question classification method using translation-based language model, which use word translation probabilities for question-question pair that is learned in the same category. In the experiment, we prove that translation probabilities of question-question pairs in the same category is more effective than question-answer pairs in total collection.

Hybrid Word-Character Neural Network Model for the Improvement of Document Classification (문서 분류의 개선을 위한 단어-문자 혼합 신경망 모델)

  • Hong, Daeyoung;Shim, Kyuseok
    • Journal of KIISE
    • /
    • v.44 no.12
    • /
    • pp.1290-1295
    • /
    • 2017
  • Document classification, a task of classifying the category of each document based on text, is one of the fundamental areas for natural language processing. Document classification may be used in various fields such as topic classification and sentiment classification. Neural network models for document classification can be divided into two categories: word-level models and character-level models that treat words and characters as basic units respectively. In this study, we propose a neural network model that combines character-level and word-level models to improve performance of document classification. The proposed model extracts the feature vector of each word by combining information obtained from a word embedding matrix and information encoded by a character-level neural network. Based on feature vectors of words, the model classifies documents with a hierarchical structure wherein recurrent neural networks with attention mechanisms are used for both the word and the sentence levels. Experiments on real life datasets demonstrate effectiveness of our proposed model.

Effective Korean sentiment classification method using word2vec and ensemble classifier (Word2vec과 앙상블 분류기를 사용한 효율적 한국어 감성 분류 방안)

  • Park, Sung Soo;Lee, Kun Chang
    • Journal of Digital Contents Society
    • /
    • v.19 no.1
    • /
    • pp.133-140
    • /
    • 2018
  • Accurate sentiment classification is an important research topic in sentiment analysis. This study suggests an efficient classification method of Korean sentiment using word2vec and ensemble methods which have been recently studied variously. For the 200,000 Korean movie review texts, we generate a POS-based BOW feature and a feature using word2vec, and integrated features of two feature representation. We used a single classifier of Logistic Regression, Decision Tree, Naive Bayes, and Support Vector Machine and an ensemble classifier of Adaptive Boost, Bagging, Gradient Boosting, and Random Forest for sentiment classification. As a result of this study, the integrated feature representation composed of BOW feature including adjective and adverb and word2vec feature showed the highest sentiment classification accuracy. Empirical results show that SVM, a single classifier, has the highest performance but ensemble classifiers show similar or slightly lower performance than the single classifier.

Performance Comparison of Automatic Classification Using Word Embeddings of Book Titles (단행본 서명의 단어 임베딩에 따른 자동분류의 성능 비교)

  • Yong-Gu Lee
    • Journal of the Korean Society for information Management
    • /
    • v.40 no.4
    • /
    • pp.307-327
    • /
    • 2023
  • To analyze the impact of word embedding on book titles, this study utilized word embedding models (Word2vec, GloVe, fastText) to generate embedding vectors from book titles. These vectors were then used as classification features for automatic classification. The classifier utilized the k-nearest neighbors (kNN) algorithm, with the categories for automatic classification based on the DDC (Dewey Decimal Classification) main class 300 assigned by libraries to books. In the automatic classification experiment applying word embeddings to book titles, the Skip-gram architectures of Word2vec and fastText showed better results in the automatic classification performance of the kNN classifier compared to the TF-IDF features. In the optimization of various hyperparameters across the three models, the Skip-gram architecture of the fastText model demonstrated overall good performance. Specifically, better performance was observed when using hierarchical softmax and larger embedding dimensions as hyperparameters in this model. From a performance perspective, fastText can generate embeddings for substrings or subwords using the n-gram method, which has been shown to increase recall. The Skip-gram architecture of the Word2vec model generally showed good performance at low dimensions(size 300) and with small sizes of negative sampling (3 or 5).

Research on the Hybrid Paragraph Detection System Using Syntactic-Semantic Analysis (구문의미 분석을 활용한 복합 문단구분 시스템에 대한 연구)

  • Kang, Won Seog
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.1
    • /
    • pp.106-116
    • /
    • 2021
  • To increase the quality of the system in the subjective-type question grading and document classification, we need the paragraph detection. But it is not easy because it is accompanied by semantic analysis. Many researches on the paragraph detection solve the detection problem using the word based clustering method. However, the word based method can not use the order and dependency relation between words. This paper suggests the paragraph detection system using syntactic-semantic relation between words with the Korean syntactic-semantic analysis. This system is the hybrid system of word based, concept based, and syntactic-semantic tree based detection. The experiment result of the system shows it has the better result than the word based system. This system will be utilized in Korean subjective question grading and document classification.

Korean Document Classification Using Extended Vector Space Model (확장된 벡터 공간 모델을 이용한 한국어 문서 분류 방안)

  • Lee, Samuel Sang-Kon
    • The KIPS Transactions:PartB
    • /
    • v.18B no.2
    • /
    • pp.93-108
    • /
    • 2011
  • We propose a extended vector space model by using ambiguous words and disambiguous words to improve the result of a Korean document classification method. In this paper we study the precision enhancement of vector space model and we propose a new axis that represents a weight value. Conventional classification methods without the weight value had some problems in vector comparison. We define a word which has same axis of the weight value as ambiguous word after calculating a mutual information value between a term and its classification field. We define a word which is disambiguous with ambiguous meaning as disambiguous word. We decide the strengthness of a disambiguous word among several words which is occurring ambiguous word and a same document. Finally, we proposed a new classification method based on extension of vector dimension with ambiguous and disambiguous words.

Use of Word Clustering to Improve Emotion Recognition from Short Text

  • Yuan, Shuai;Huang, Huan;Wu, Linjing
    • Journal of Computing Science and Engineering
    • /
    • v.10 no.4
    • /
    • pp.103-110
    • /
    • 2016
  • Emotion recognition is an important component of affective computing, and is significant in the implementation of natural and friendly human-computer interaction. An effective approach to recognizing emotion from text is based on a machine learning technique, which deals with emotion recognition as a classification problem. However, in emotion recognition, the texts involved are usually very short, leaving a very large, sparse feature space, which decreases the performance of emotion classification. This paper proposes to resolve the problem of feature sparseness, and largely improve the emotion recognition performance from short texts by doing the following: representing short texts with word cluster features, offering a novel word clustering algorithm, and using a new feature weighting scheme. Emotion classification experiments were performed with different features and weighting schemes on a publicly available dataset. The experimental results suggest that the word cluster features and the proposed weighting scheme can partly resolve problems with feature sparseness and emotion recognition performance.