• Title/Summary/Keyword: wool

Search Result 1,106, Processing Time 0.029 seconds

동물성(動物性) 섬유(纖維)의 화학적(化學的) 조성분(組成分)이 피복재료(被服材料)의 특성(特性)에 미치는 영향(影響) - I. 한국산(韓國産) 양모(羊毛)의 화학적(化學的) 조성분(組成分) -

  • Gang, Suk-Yeo
    • Journal of the Korean Society of Costume
    • /
    • v.14
    • /
    • pp.209-213
    • /
    • 1990
  • In the present research to evalulate the chemical composition of wool under Korean feeding conditions have been investicated. The experiment was designed two treatments (washed and non-washed wool) and devided inner and outer side wool each treatment. The criteria for evaluation of wool with chemical composition were protein, fat, ash, amino acid and mineral content. The results which were obtained as follows: 1. Average protein content of non-washed and washed wool were 76.05% and 92.31%, respectively. However it was not different in protein content between inner and outer side wool. 2. Average fat content of non-washed and washed wool were 12.43% and 5.77%, respectively. However inner side wool was more fat content than outer side wool. 3. Average ash content of non-washed and washed wool were 10.50% and 0.90%, respectively. However inner side wool was less ash content than outer side wool. 4. Amino acid composition was not different between inner side and outer side wool. However lysine, arginine, proline, and glycine content of inner side wool were higher than those of outer side wool. 5. Mineral content of non -washed wool were higher than those of washed wool. Potassium content of non-washed wool was very high compare with that of washed wool.

  • PDF

Physical Properties and Dyeability of Fine Count Wool Yarns and Its Fabrics by Drawing Process of Fineness Control (섬도제어 연신공정에 의한 세섬화 양모 소재의 물성 연구)

  • Kim, Mikyung;Jeon, Byeongdae;Jeong, Jaeseok
    • Textile Coloration and Finishing
    • /
    • v.28 no.4
    • /
    • pp.253-270
    • /
    • 2016
  • In the wool textile industry, the necessity for technology development has been steadily raised to create improved fineness and yarn count of existing wool yarns with thick fineness for ensuring higher quality grades of wool yarn. Recently, through controlling fineness of wool yarn for making finer wool in relation with environmentally-friendly and high-sensitivity trend, a differentiated continuous drawing process where the quality of wool can be artificially manipulated has been suggested in the latest textile industry. This study investigated the basic conditions during the continuous drawing process which enable to manufacture wool yarn with fine count by controlling reducing agent treatment, physical drawing and drying after reducing agent treatment, and oxidizing agent post-treatment conditions. Furthermore, this study reviewed the drawing effects by applying the basic conditions for reduction and oxidation reaction in the drawing processes of wool/cashmere, wool/silk, wool/polyester blended yarns as well as such wool yarns. Also, in order to review the practicability, this study examined the physical properties and dyeability of drawn wool yarn applied textile materials in comparison with normal wool yarn applied textile materials.

Development of highly sensible wool mixed fabric with conjugated texturing and yarn dyeing technologies

  • Park, Joon-Soo;Seo, Mal-Yong
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2009.03a
    • /
    • pp.229-230
    • /
    • 2009
  • Recently the demand for wool has been gradually decreasing due to global warming, oil depletion, Coolbiz campaign to reduce CO2 emission, and preference for business casual wear, while the price for wool materials has been constantly increasing. Wool, characterized by the natural touch and unique sensibility, is considered as one of the best natural materials, including silk. For wool, currently Korea almost depends on import from foreign countries. Therefore, 100% wool products cannot be competitive in terms of pricing and current trend. To secure sustaining competitiveness in the fiber market, it is required not only to develop new wool materials that enable expression of new sensibility that cannot be expressed by conventional wool fibers, but also to pursue differentiation of fundamental sensibility and functionality by highlighting advantages for wool as a natural fiber but by reducing its disadvantages through dominant conjugation with synthetic fibers. This study attempted to improve the technology of differentiating wool-like synthetic fibers such as polyester and combine technology with sensibility through mixing with wool materials. It also aimed to develop wool-like stretch materials and pre-treating and yarn dyeing technologies that enable fabrics to main natural wool-like touch and stretch, and ultimately to develop wool mixed fabrics that have new sensibility and functionality.

  • PDF

Evaluation of Extended Boar Semen after Glass Wool Filtration (Glass Wool Filtration 후 돼지정액의 평가)

  • Kang, Tae-Young
    • Journal of Veterinary Clinics
    • /
    • v.32 no.1
    • /
    • pp.45-48
    • /
    • 2015
  • The purpose of this study was to select high-quality boar semen after the glass wool filtration of extended boar semen. After collecting boar semen, its concentration, morphology, viability, and motility were examined according the glass wool's height and time. After glass wool filtration, the sperm concentration decreased, but the proportion of normal sperms and the sperm viability increased. Nevertheless, the sperm motility showed no changes. The above results showed that the glass wool filtration of boar semen is a method of obtaining sperms with relatively low abnormal rates and high viabilities.

Effect of Low Temperature Plasma and DCCA treatment on the Dyeing Properties of Wool Fabric (DCCA 처리와 저온플라즈마 처리가 양모직물의 염색성에 미치는 영향)

  • Jung, Young-Jin
    • Textile Coloration and Finishing
    • /
    • v.20 no.4
    • /
    • pp.53-59
    • /
    • 2008
  • For the modification of wool surface, wool fabrics treated with oxygen low-temperature plasma(LTP) and dichloroisocyanuric acid(DCCA) were dyed with milling type acid dye. The difference of dyeing properties on modified and control wool fabric were investigated. DCCA treated wool showed that saturation dye uptake and dyeing desorption ratio were higher than LTP treated wool. Dyeing transition temperatures of DCCA and LTP treated wool fabrics were 20$^{\circ}C$ degree lower than control wool fabric. In light color fastness test, DCCA treated wool fabric was 1 grade lower than LTP or control wool fabric.

Thermal Comfort and Tactile Wearing Performance of Wool/nylon Fabrics for Tra-biz Garment (울/나일론 tra-biz 의류용 직물 소재의 열적 쾌적성과 착용특성)

  • Kim, Hyun Ah
    • Fashion & Textile Research Journal
    • /
    • v.18 no.6
    • /
    • pp.878-888
    • /
    • 2016
  • In this study, wool/nylon(50/50%) blend yarn and its fabrics for tra-biz(complex word of travel+business) garment were prepared, and its wear comfort characteristics were investigated through thermal manikin and human-body wearing experiment. In addition, tactile wearing performance from fabric mechanical properties and the dimensional stability and the pilling of the fabric specimen during wearing and dry-cleaning were measured and compared with those of wool 100% fabric specimen. Heat keepability of the wool/nylon(50/50%) blend fabric by thermal manikin experiment was superior than that of wool 100% fabric, this result was verified with human-body wearing experiment and its result coincided well with this experimental result. Tactile wearing performance of the wool/nylon(50/50%) fabric from fabric mechanical properties measured by FAST system was better than that of the wool 100% fabric. The dimensional stability of the wool/nylon(50/50%) fabric was more stable than that of the wool 100% fabric. Because relaxation shrinkage was lower and hygral expansion of wool 100% fabric was more high. However, the breathability and pilling property of the wool/nylon(50/50%) fabric were inferior than those of the wool 100% fabric. The possibility of application for tra-biz garment of wool/nylon(50/50%) blend fabric was observed because of good heat keepability, tactile wearing performance and washing fastness.

Modification of Oxidation Wool Treated with Protease(Part I)-Changes of chemical properties (산화양모의 효소처리에 의한 양모섬유의 개질(제1보)-화학적 성질의 변화-)

  • 김영리;유효선
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.22 no.7
    • /
    • pp.843-850
    • /
    • 1998
  • The purpose of this study is the investigation of chemical properties of wool treated with oxidants and protease at low temperature. The chemical degradation of the fibers were investigated by measuring $\alpha$-amimo acid contents and FT-IR analysis. In addition, urea-hydrogensulfite solubility was measured to compare to the oxidation and protease treated wool. The results were as follows. 1) By the oxidation of wool, cystine is oxidised to cysteic acid by way of the intermediate oxides, cystine-S-monooxide and cystine-S-dioxide, in the case hydrolysis catalysed by the protease catalyse. Also, $\alpha$-amimo acid contents is increased, and urea-hydrogensulfite solubility was lower than that of untreated wool. This chemical degradation of wool was occurred due to oxidate hydrolysis in the order of permonosulfate>dichloroisocyanuric acid$\geq$chlorine. 2) The chemical degradation of wool was accelerated by the protease treatment of oxidized wool. Oxidation of wool is considered to make the fiber more susceptibled to enzymatic attact by opening disulphide bond within wool. Enzymatic attact was effectively directed to the wool oxidised by permonosulfate.

  • PDF

Differential Dyeing Technology in Wool (양모의 이색효과 염색방법)

  • Chang, Bo-Hyun;Lee, Hak-Ki
    • Textile Coloration and Finishing
    • /
    • v.4 no.1
    • /
    • pp.10-15
    • /
    • 1992
  • Differential dyeing technologies for wool are discussed in one bath dyeing of cationic compound treated wool and untreated wool. By increasing the concentration of cationic compound to wool the k/s value of wool and the color difference (ΔE) between treated and untreated one become higher in one bath dyeing. The proper concentration of cationic compound to wool was 2% in one bath dyeing since the dyeing fastness became lower according to the increase of the concentration.

  • PDF

Development of Washable Wool Using Environmental-friendly Spray UV-cure Finishing Technique - Using Photocrosslinkable Polymerr Dextran-methacrylate- (환경친화적 Spray UV-Cure 가공 기술을 이용한 물세탁 모직물(washable wool)의 개발 -광가교 고분자인 dextran-methacrylate를 이용하여-)

  • 김신희
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.28 no.11
    • /
    • pp.1507-1515
    • /
    • 2004
  • Washable wool was developed using environmental-friendly spray UV-cure technique. Photocrosslinkable polymer, dextran-methacrylate, was synthesized starting from natural biopolymer, dextran. The aqueous solution of dextran-methacrylate was applied to wool fabric with various concentrations to find out the optimum condition in minimizing felting shrinkage. The wool fabric subsequently cured by 365 nm UV, The effects of UV-cure time and photoinitiator concentration on felting behavior of wool were examined. As the concentration of dextran-methacrylate increased, the felting shrinkage decreased gradually. At concentration 0.5g/ml, the felting shrinkage of wool was negligible. Other properties such as air permeability, moisture content, wrinkle recovery, thickness and wettability were also evaluated. The surface coating of dextran polymer onto wool fiber was identified by SEM.

Modification of Wool Fiber by Enzymatic Treatment (I) (효소처리에 의한 양모섬유의 개질 (I))

  • Park, Jung-A;Park, Jeoung-Young;Lim, Yong-Jin
    • Textile Coloration and Finishing
    • /
    • v.3 no.4
    • /
    • pp.7-12
    • /
    • 1991
  • Wool gabardines were treated with alkaline proteases, and their tensile strerigth and dyeing behavior were obtained. Enzylon ASA 30 and Alcalase 2.5L DX did not show much effect on the weight loss of wool, but Esperase 8.0L decreased the weight of wool to a great extent. Pretreatment of wool with dichloroisocyarturic acid before protease-treatment increased the weight loss of wool considerably. Weight loss was accompanied by serious strength decrease and the use of sodium sulfate in the protease-treatment had not effect on the strength retention, only lowering the weight loss of wool. Protease-treatment of wool increased dyeability considerably, which may be due to the change in the inner structure of wool fiber by protease.

  • PDF