• 제목/요약/키워드: wood grain

검색결과 153건 처리시간 0.022초

Mechanical Behavior of Treated Timber Boardwalk Decks under Cyclic Moisture Changes

  • LIU, Jian;JI, Yiling;LU, Jiaming;LI, Zhi
    • Journal of the Korean Wood Science and Technology
    • /
    • 제50권1호
    • /
    • pp.68-80
    • /
    • 2022
  • Timber boardwalk decks are widely installed in parks and scenic areas to provide pedestrians an elevated footpath as well as harmony with the surrounding natural scene. In order to extend the lifespan of boardwalks in the outdoor environment, industrially treated pine timber, such as Pinus sylvestris, is often adopted. However, accidents of pedestrians injured by damaged boardwalk decks have been constantly reported. Therefore, the mechanical behavior of two different types of treated timber was examined in this study under repeated wetting and drying. An increasing number of radial cracks appeared with increasing length and width as more cycles were performed. A loss of more than 40% of the screw withdrawal capacity was observed in both end grain and face grain for the two types of timber after twelve accelerated wet-dry cycles, which coincides with the observation of damaged timber boardwalks in the field investigation. At the same time, it was found that both the compressive and the flexural strength was not sensitive to the wet-dry cycles especially at large cycle numbers.

Dimensional Responses of Wood Under Cyclical Changing Temperature at Constant Relative Humidity

  • Yang, Tiantian;Ma, Erni;Shi, Yi
    • Journal of the Korean Wood Science and Technology
    • /
    • 제43권5호
    • /
    • pp.539-547
    • /
    • 2015
  • To investigate dimensional responses of wood under dynamic temperature condition, poplar (populous euramericana Cv.) specimens, 20 mm in radial (R) and tangential (T) directions with two thicknesses of 4 and 10 mm along the grain, were exposed to cyclic temperature changes in square wave between $25^{\circ}C$ and $40^{\circ}C$ at 60% relative humidity (RH) for three different cycling periods of 6 h, 12 h and 24 h. R and T dimensional changes measured during the cycling gave the following results: 1) Transverse dimensional changes of the specimens were generally square but at an opposite phase and lagged behind the imposed temperature changes. The phase lag was inversely correlated with cycling period, but positively related to specimen thickness, while the response amplitude was directly proportional to cycling period, but in a negative correlation with specimen thickness. 2) The specimens showed swelling hysteresis behavior. The heat shrinkage coefficient (HSC) became greater as cycling period increased or specimen thickness decreased. 3) Dimensional changes of the specimens produced deformation accumulation during repeated adsorption and desorption. The deformation accumulating ratio decreased with an increase in cycling period and specimen thickness. 4) Wood suffered 1.5 times as many dimensional changes per unit temperature variation as per unit humidity variation, and this deformation behaved even more seriously under static condition.

가구(家具) 및 건축용(建築用) 목제(木製) 플러시도어의 길이 굽음 변형발생(變形發生) 원인응력(原因應力)에 관(關)한 연구(硏究) (A Study on the Stresses causing the Bowing of Wooden Flush Doors for Furnitures and Buildings)

  • 정우양
    • Journal of the Korean Wood Science and Technology
    • /
    • 제20권3호
    • /
    • pp.39-54
    • /
    • 1992
  • Hollow core wood flush doors for wardrobes, and other general openings and bathroom were designed and fabricated to investigate the factors causing the bowing of them and to find out the countermeasure for the phenomena. Balance in grain orientation, thickness, specific gravity and M.C.(%) of face panel and symmetrical construction were the essential factors to prevent the deflection of flush doors just after manufacturing. Under one-sided severe service condition, the unbalance of M.C. between opposite face panels is inevitable. So the material as thick plywood with high stiffness is considered as an alternative for the stile. UF resin mixing into PVAc emulsion is preferred for bathroom.

  • PDF

간벌강도에 따른 낙엽송의 휨 및 종압축강도성능 (Bending and Compressive Strength Properties of Larix kaempferi According to Thinning Intensity)

  • 정성호;원경록;홍남의;박병수;이경재;변희섭
    • Journal of the Korean Wood Science and Technology
    • /
    • 제42권4호
    • /
    • pp.385-392
    • /
    • 2014
  • 우리나라의 중요한 조림 수종 중에서 낙엽송을 대상으로 하여, 간벌실시에 따른 물리 역학적 성질을 비교 평가함으로써 간벌 실시가 목재의 재질에 미치는 영향과 양질재 생산 및 목재의 효율적 이용을 위한 연구결과는 다음과 같다. 간벌정도에 따른 시료는 무간벌, 약도간벌, 강도간벌을 실시한 광릉시험림에서 벌채하여 사용하였다. 간벌 정도에 따른 평균 만재율은 무간벌 < 약도간벌 < 강도간벌의 경향이었고 평균 연륜폭은 무간벌 < 약도간벌 또는 강도간벌의 경향이었다. 간벌 정도에 따른 평균 휨강도는 무간벌 > 약도간벌 >강도간벌의 경향이었고 간벌 정도에 따른 평균 압축강도는 무간벌 > 약도간벌 >강도간벌의 경향이었다. 이러한 결과로 낙엽송은 간벌에 의하여 휨 및 종압축강도가 감소하는 경향이었다.

Physical and Mechanical Properties of Light Red Meranti Treated with Boron Preservatives

  • Man Djun LEE;Ridge Wei Cheong TANG;Zeno MICHAEL;Miqdad KHAIRULMAINI;Azmi ROSLAN;Ahmad Faidzal KHODORI;Hazim SHARUDIN;Pui San LEE
    • Journal of the Korean Wood Science and Technology
    • /
    • 제52권2호
    • /
    • pp.157-174
    • /
    • 2024
  • This study investigates the influence of varying concentrations of boric acid (BA) preservative on the physical and mechanical properties of light red meranti (LRM) found in Sarawak. LRM or Shorea leprosula samples were treated with various concentrations of BA via the dip diffusion method using American Society for Testing and Materials (ASTM) standards. The physical property, particularly the retention rate and mechanical properties, bending strength, modulus of elasticity (MOE), tensile and compression strength parallel to grain of impregnated and control samples were tested to determine the effects of BA preservative. The retention rate was found to increase with increasing BA concentration and higher surface area to volume ratio. The mechanical properties in terms of the MOE and tensile strength parallel to grain were found to be greater than those of the control samples, whereas the bending strength and tensile strength parallel to grain were lower. Amongst the results, only the retention rate and MOE showed significant interaction effects at 5% level of significance between all factors tested (samples size and BA concentration for retention rate and BA concentration for MOE).

Effect of Finger Profile on Static Bending Strength Performance of Finger-Jointed Wood

  • Park, Han-Min;Lee, Gyun-Pil;Kong, Tae-Suk;Ryu, Hyun-Soo;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • 제32권6호
    • /
    • pp.57-66
    • /
    • 2004
  • To study the efficient usage of small diameter logs and woods containing defects such as knots, slope of the grain and decay, six types of finger-jointed woods with various finger profiles were made of poplar, pine and oak with different density. We investigated the effect of finger profile on static bending strength performances of finger-jointed woods. The efficiency of bending MOE, MOR and deflection showed the highest value in poplar finger-jointed wood with the lowest density of three species, and the lowest value in oak finger-jointed wood with the highest density of three species. The values markedly decreased with increasing finger pitch for finger-jointed wood glued with polyvinyl acetate (PVAc) resin for all tested species, whereas for the finger-jointed wood glued with resorcinol-phenol formaldehyde (RPF) resin, the influence of finger pitch on the efficiency of MOE was not found in all tested species, and those on the efficiency of MOR and deflection indicated the same trend as finger-jointed wood glued with PVAc resin in the case of pine and oak finger-jointed wood with higher densities. It was found that the values tended to decrease with increasing density of species on the whole and the desirable finger pitches were L (6.8 mm) for poplar, M (4.4 mm) for pine and S (3.5 mm) for oak in a view of economy. For finger-jointed wood glued with PVAc resin, the fitness between a tip and a root width of a pair of fingers δ of 0.5 mm indicated the highest efficiency of MOE for all species. And, the influence of δ on MOR was only found in oak finger-jointed wood glued with RPF resin and the desirable δ value for oak was 0.1 mm. However, it was found that the influence of δ on the strength performance was very small.

목재와 목질보드 복합적층재의 휨 크리프 성능 (Bending Creep Performances of Hybrid Laminated Woods Composed of Wood-Wood Based Boards)

  • 박한민;강동현;최윤은;안상열;류현수;변희섭
    • Journal of the Korean Wood Science and Technology
    • /
    • 제38권1호
    • /
    • pp.1-10
    • /
    • 2010
  • 이 연구에서는 목재의 효율적인 이용의 일환으로 스프루스 직교형적층재의 중층을 중밀도섬유판(medium density fiberboard, MDF), 파티클보드(particle board, PB) 및 오에스비(oriented strand board, OSB)의 3종류의 시판용 목질보드를 복합적층한 3층 목질계 복합적층재(패널)를 제작하여, 중층 목질보드라미나의 구성엘리멘트가 복합적층재의 휨 크리프성능에 미치는 영향을 조사하였다. 복합적층재의 휨 크리프곡선은 우측상변이 급증하는 지수함수 그래프를 나타내었고, 각 복합적층재의 중층 목질보드라미나의 종류에 따라 다른 경향을 나타내었다. 복합적층재의 크리프변형은 표층섬유직각방향($C_{\perp}$ 타입)에서는 중층에 PB, MDF, OSB를 배열한 $C_{\perp}$(P)타입 > $C_{\perp}$(M)타입 > $C_{\perp}$(O)타입의 순으로, OSB를 중층에 배열한 타입의 크리프변형이 MDF나 PB를 중층에 배열한 것의 2배 이상 적은 것이 확인되었고, 복합적층에 의해 스프루스 섬유직각방향의 크리프변형의 현저한 감소가 나타났다. 한편, 표층섬유방향($C_{\parallel}$ 타입)의 크리프변형은 중층에 PB, OSB, MDF를 삽입한 $C_{\parallel}$(P)타입 > $C_{\parallel}$(O)타입 > $C_{\parallel}$(M)의 순이었으나, 복합적층에 의해 적층재상호간의 비는 현저히 감소하였고, 중층에 PB와 OSB를 배열한 복합적층재의 크리프변형의 차이는 매우 적은 것이 확인 되었다. 이 값은 목질보드의 크리프변형보다는 0.108~0.464배의 적은 크리프변형을 나타내어 복합적층에 의해 목질보드의 크리프변형의 현저한감소가 나타났다. 복합적층재의 표층섬유방향에 대한 표층섬유직각방향의 크리프이방성은 초기변형보다 크리프변형이 현저히 컸지만, 스프루스 평행형적층재의 크리프이방성보다는 현저히 감소하는 것이 확인되었다.

붉가시나무의 목재성질 (Wood Properties of Quercus acuta Thunb.)

  • 정성호;박병수;정두진;이도식;조성택;전수경
    • 한국가구학회지
    • /
    • 제18권1호
    • /
    • pp.39-46
    • /
    • 2007
  • This study was carried out to investigate the wood properties for efficient utilization of warm temperate tree species of Quercus acuta Thunb. grown in Korea. Fundamental wood properties in the anatomical, physical, mechanical and chemical characteristics were examined. Quercus acuta Thunb. is a radial-porous, straight grained and fine textured wood. The heartwood is not clearly distinguished from the sapwood. In physical properties, it has a high oven-dry specific gravity of $0.85{\pm}0.02$, and high shrinkage from green to air-dried condition of $7.05{\pm}0.52%$ in radial and $11.13{\pm}0.48%$ in tangential direction. Mechanical properties determined are strong with the MOR of $1,065{\pm}90kgf/cm^2$, and tensile strength parallel to grain of $1,490{\pm}258kgf/cm^2$ and shear strength of $175{\pm}13kgf/cm^2$. Also, this wood has high extractive contents: 11.11% for cold and 13.51% for hot water.

  • PDF

폴리에치렌 글리콜-400에 의한 목재(木材)의 칫수안정화(安定化) (On the dimensional stabilization of woods with treatment of Polyethylene Glycol-400)

  • 조남석;조재명;배규용
    • Journal of the Korean Wood Science and Technology
    • /
    • 제3권1호
    • /
    • pp.3-15
    • /
    • 1975
  • How to stabilize wood against shrinking and swelling in variable atmospheric moisture conditions is important to the wood-using industry and a challenge to research. Polyethylene glycol stabilize wood by bulking the fiber. PEG also serve as a chemical seasoning agent, suppress decay in high concentrations, and have slight effect on physical properties, gluing or finishing. The study designed to determine the effect of PEG-400 on the dimensional stabilization of local hardwoods for wood carvings that could supply a greatly expanding tourist trade and making curved furniture parts, lamp stands and other decorative objects, and possible gunstock. The species examined were 6 species, Seo-Namoo (Carpinus laxiflora), Cheungcheung-Namoo (Cornus controversa), Gorosae-Namoo (Acer mono), Karae-Namoo (Juglans mandshurica), Jolcham-Namoo (Quercusserrata) and Sanbud-Namoo (Prunus sargentii), used as block of 5cm thick radially to the grain, 7cm wide tangentially, and 70cm long parallel to the wood grain. All these test piecies were conditioned above the fiber saturation point before impregnation. The stabilization effects were determined for PEG-400 treated woods in a 50 percent solution for 20 days. The following conclusions were obtained. PEG retentions increased with treating time. It was more effective to treat at 60$^{\circ}C$ than at room temperature. In degree of PEG-400 impregnation on species, Cheungcheung-Namoo havinglow specific gravity had the highest retentions, 68.77% but the lowest, 56.33% was shown in Jolcham-Namoo with high specific gravity. Specific gravity of treated wood increased considerably with effectiveness of polymer loading. The increases in specific gravity were 5.36 to 13.16 percent. The highest was Jolcham-Namoo, the lowest Karae-Namoo. On the dimensional stability, a 40 percent of effectiveness of polymer loading was just as effective as 60 percent in reduction in water absorptivity (RWA), antishrinkage efficiency (ASE) and antiswelling efficiency (AE), and from over 60 percent they increased more rapidly. Also species response varied considerably. ASE was 30.12 to 69.97 percent tangentially and 27.86 to 56.37 percent radially, AE 34.06 to 73.76 percent tangentially and 30.11 to 70.12 percent radially, and RWA 42.31 to 65.32 percent. No differences in volume swelling among the 6 species were observed. Its values were ranged from 14.98 to 19.55 percent and also increased with PEG retentions. On the mechanical properties, the strengths very much decreased with PEG-400 loadings as shown in Figure 12; that were 11.41 to 22.90 percent in compression, 21.61 to 34.35 percent in bending and 22.83 to 36.83 percent in tensile strength. PEG retention in cell wall was less than 1 percent and the most of PEG were immersed in cell lumen. Except for Korae-Namoo, effectivenesses of polymer loading were as much high as 61.58 to 75.02 percent. This is believed to be due to the effect of PEG-400 on excellant dimensional stability of treated woods.

  • PDF

혼합재 및 입도에 따른 경량기포콘크리트의 강도특성 개선 (Improvement of Strength in ALC using Admixtures and Grain Size)

  • 김영엽;송훈;이종규;추용식
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2007년도 추계 학술논문 발표대회
    • /
    • pp.79-82
    • /
    • 2007
  • Recently, the use of ALC has became increasingly popular. ALC is a unique building material. Because of its cellular nature, it is lightweight, self-insulating, sound and fireproof, as well as insect and mold resistant. Furthermore, ALC is free of VOCs and various fibers associated with wood and glass wool construction. However, ALC have high water absorption, low compressive strength and popout the origin of the low surface strength in its properties. These properties make troubles under construction such as cracking and popout. Thus, this study is to improve the fundamental strength by controls of increasing of admixtures, and grain size. Admixtures make use of metakaolin, silica fume, sodium silicate and sodium hydroxide. From the test result, the ALC using admixture have a good fundamental properties compared with plain specimen. Compressive strength, specific strength and abrasion's ratio were improved depending on increasing admixtures ratio's, and grain size.

  • PDF