• Title/Summary/Keyword: wood grain

Search Result 153, Processing Time 0.024 seconds

Properties and Manufacturing of Low Melting Alloy Impregnated Wood Composites for using Domestic Thinned Logs of Juglans mandshurica (국산 가래나무 간벌재활용을 위한 금속주입목재의 제조 및 특성)

  • Park, Kye-Shin;Lee, Hwa-Hyoung
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.3
    • /
    • pp.457-464
    • /
    • 2010
  • The low melting alloy impregnated wood composites with natural grain of thinned Juglans mandshurica was made and evaluated in this study. And the proper manufacturing conditions was also investigated in this study. The low melting alloy with bismuth(Bi) and tin(Sn) which are harmless to humans, was applied for this novel composites, which showed not only no defects of discoloration, delamination, swelling, and cracking, because of high dimensional stability and low thickness swelling, but also much improved performance such as high bending strength, high hardness, low abrasion, high thermal conductivity as floor materials. This study also suggested the proper impregnating condition, such as 10 minutes of the preliminary vacuum time, $187^{\circ}C$ of the heating temperature and 10 minutes of the maintaining pressure time at the pressure of 30kgf/$cm^2$. The produced composites showed 9 times higher density for small specimen, 6.6 times for actual size sample and great increase in bending strength from 102.05N/$mm^2$ to 189.47N/$mm^2$ for small size sample and to 205.4N/$mm^2$ for actual size sample, also great increase in hardness from 15.1N/$mm^2$ to 73.38N/$mm^2$ for small size sample and 64.87N/$mm^2$ for actual size sample. And the composites demonstrated great decrease in abrasion depth and in water absorption.

Theoretical Models for Predicting Racking Resistance of Shear Walls (전단벽의 전단성능 예측 모형)

  • Jang, Sang Sik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.96-105
    • /
    • 2002
  • Shear wall is the most important component resisting lateral loads imposed to a building by wind or earthquake. In shear walls, lateral load applied to framing is transmitted to sheathing panel through nailed joints between sheathing and framing so that the load is resisted by in-plane shear strength of sheathing. Therefore, nailed joints are the most basic and important component in the viewpoint of stiffness and strength of shear walls. In this study, stiffness and strength of single nailed joint were measured by single shear tests of nailed joints and used as input for theoretical models developed to estimate racking behavior of shear walls. And shear walls were tested to check the accuracy of theoretical models estimating racking resistance of shear walls. Stiffness of nailed joint was affected by grain direction of stud but direction of sheathing panel had little effect. Behavior of nailed joint and shear walls under lateral loads could be represented by three lines. Theoretical model II was more accurate than theoretical model I in estimating racking behavior of shear wall under loads.

Trends in Agricultural Waste Utilizatili-zation

  • Han, Youn-Woo
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 1979.04a
    • /
    • pp.113.1-113
    • /
    • 1979
  • Each year, vast amount of agricultural crop residues are produced (about 60 percent of the total crop production), which have not been effectively utilized because they are bulky and lignocellulosic, thus having little fuel energy per unit volume. Using treated plant residues as animal feeds could result in an ultimate saving of fossil fuel energy and a more effective utilizat ion of products created by the photosynthetic process. Feeding the residues to animals would decrease the pollution potential, but these residues are difficult for even a ruminant animal to digest. If cellulosic wastes produced from cereal grain straw and wood could be digested, land now used for producing forage add grain cnuld be shifted to food crops for humans. During the past decade, considerable efforts were made to utilize crop residues. These utilization methods can be broadly grouped into for categories: (1) direct uses, (2) mechanical conversions, (3) chemical conversions and (4) biological conversions. Agricultural crop residues consist mainly of cellulose, hemicellulose, lignin, pectin, andother plant carbohydrates. The nature of the constituents of these residues can be best utilized as one of the five FS: Fuel, Fiber, Fertilizer, Feed and Food. Many processes have teen proposed and some are in industrial production stage. However, economics of the process depend on the location where availability of other competitive products are different.

  • PDF

A Study on Heat Transfer of Plywood for Wood Based Flooring by Veneer Composition (마루판용 합판의 단판 구성요소에 따른 열전달 특성에 관한 연구)

  • Pi, Duck-Won;Choi, Song-Kyu;Kang, Ho-Yang;Kang, Seog-Goo
    • Journal of the Korea Furniture Society
    • /
    • v.23 no.3
    • /
    • pp.298-304
    • /
    • 2012
  • Since 1990's, a flooring based on plywood has gotten customers' demand. Costs of raw material and production increased because of changed environment of industry. Tropical timber such as Red Meranti (Shorea acuminate) used for raw material of the floor has been depleting beside countries in South Eastern Asia changed species of afforestation. As a result, it gets hard to secure good quality of raw material for plywood. Moreover plywood price is increased suddenly after earthquake in Japan. Eucalyptus (Eucalyptus globulus) in china has been using for raw material as a countermeasure of changed environment of industry. In this study, possibility of using flooring consisted of Eucalyptus veneer as a core layer was checked by heat transfer experiments. Flooring consisted of Red Meranti was used for comparison. Two factors which impact on heat transfer are a type of density gradient and density difference between Long-grain veneer and Short-grain veneer. Red Meranti samples are 'M' type of density gradient on the other hand Eucalyptus samples are 'W' type of density gradient.

  • PDF

Cryogenic Mechanical Characteristics of Laminated Plywood for LNG Carrier Insulation System (LNG운반선 방열시스템에 적용되는 적층형 플라이우드의 극저온 기계적 특성 분석)

  • Kim, Jeong-Hyeon;Park, Doo-Hwan;Choi, Sung-Woong;Lee, Jae-Myung
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.3
    • /
    • pp.241-247
    • /
    • 2017
  • Plywood, which is created by bonding an odd number of thin veneers perpendicular to the grain orientation of an adjacent layer, was developed to supplement the weak points such as contraction and expansion of conventional wood materials. With structural merits such as strength, durability, and good absorption against impact loads, plywood has been adopted as a structural material in the insulation system of a membrane type liquefied natural gas (LNG) carrier. In the present study, as an attempt to resolve recent failure problems with plywood in an LNG insulation system, conventional PF (phenolic-formaldehyde) resin plywood and its alternative MUF (melamine-urea-formaldehyde) resin bonded plywood were investigated by performing material bending tests at ambient ($20^{\circ}C$) and cryogenic ($-163^{\circ}C$) temperatures to understand the resin and grain effects on the mechanical behavior of the plywood. In addition, the failure characteristics of the plywood were investigated with regard to the grain orientation and testing temperature.

Effect of Distance between Finger Tip and Root Width on Compressive Strength Performance of Finger-Jointed Timber (핑거공차가 핑거접합재의 압축강도 성능에 미치는 영향)

  • Ryu, Hyun-Soo;Ahn, Sang-Yeol;Park, Han-Min;Byeon, Hee-Seop;Kim, Jong-Man
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.66-73
    • /
    • 2004
  • Three species of Italian poplar (Populus euramericana), red pine (Pinus densiflora) and oriental oak (Quercus variabilis) were selected for this study. They were cut so that the distances between each of tips and roots for a pair of fingers were 0, 0.15, 0.30 and 0.45 mm. Poly vinyl acetate (PVAc) and resorcinol-phenol resin (RPR) were used for finger-jointing. Compressive test parallel to the grain was conducted for the finger-jointed specimens. The results were as follows: The efficiency of compressive Young's modulus of finger-jointed timber to solid wood indicated low values, whereas the efficiency of compressive strength indicated high values of more than 90% in all species, especially, it was found that those of red pine indicated markedly high values of more than 97%. The efficiency of compressive displacement of Italian poplar finger-jointed timber was 2 times higher than solid wood, and it was 1.2 and 1.3 times higher than solid woods in red pine and oriental oak, respectively. Also, it was found that 0, the distance between each tip and root for the fingers, indicated the highest efficiency of compressive strength performance in Italian poplar finger-jointed timber, and for red pine and oriental oak finger-jointed timbers, the distances of 0.15 and 0.30 were found to indicate the highest efficiency.

The Characteristics of Ornamental Technique and Motifs in Folk Furniture of Chosun Dynasty-In Reference to a Comparison between Danish and Korean Folk Furniture- (조선조 가구의 장식적 표현기법과 무늬의 특징-덴마크와 한국의 민속가구 비교를 중심으로-)

  • 최정신
    • Korean Institute of Interior Design Journal
    • /
    • no.12
    • /
    • pp.57-66
    • /
    • 1997
  • This study was carried out to find out some similarities and differences of the ornamental technique and motifs in folk furniture between Denmark and Korea which had quite different background of development of folk furniture as one of a cross-cultural study. Furniture made and used in the 18th and 19th century was investigated in order to eliminate the influence of internationalism in the design area in the 20th century. This study was fulfilled by many study trips all over the districts in Denmark to identify Danish folk furniture as well as literature study. Study trips to folk museums. Insa-dong, Janghanpyung furniture market were done for Korean folk furniture. Characteristics of ornament in Danish folk furniture were as followings; Main materials of the Danish folk furniture were conifers, especially pine tree, as pine was very common and easy to get from their surroundings. The most popular and unique types of decoration in Danish folk furniture was painting. Colors used in painted furniture were very bright and vivid. This might be a reaction to the long and dark winter of Scandinavian countries. Motifs used in Danish folk furniture had been chosen to reflect their surroundings. Flowers, six-angular stars, animals, human figures and Biblical motifs were popular sources of decoration for Danish folk furniture. Characteristics of Korean folk furniture were as followings; Main materials of Korean folk furniture were broad-leaved trees as well as conifers, because of their beautiful wood grain. The Korean ways of decoration were different from Danish ones. The method of painting with bright from Danish ones. The method of painting with bright colors was hardly ever used in Korea, except only in lacquering. The most popular decoration method for Korean folk furniture was revealing the natural wood grain with transparent vegetable oil finish, instead of painting. Metal ornament was unique to Korean folk furniture. therefore a lot of metal ornaments were attached on the furniture. Motifs used in Korean folk furniture were more like symbolic than Danish ones. Korean people tried to express their longings and norms through the motifs, such as longevity, prosperity, good luck, and many sons, etc. Therefore, it was natural for Korean motifs to have special symbolic meanings.

  • PDF

A Study on Sawing and Utilization Structure of Lumber from Small - diameter Logs of Larix leptolepis (낙엽송 소경재(小徑材)의 제재이용구조(製材利用構造)에 관(關)한 연구(硏究))

  • Lee, Choon-Taek;Kim, Su-Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.53-68
    • /
    • 1990
  • This research has been executed for maximization of lumber yield and more efficient use of small diameter logs. Sample logs from thinnings carne from densed artificial stands at the Kwangnung Experimental Forests situated in the central region of Korean peninsula. Species of sample logs were obtained to execute sawing and strength test for larch, and lumber strength test in full size for pitch pine and Korean pine. A survey on sawmills consuming domestic logs was carried out to know sawmill production, costs and utilization structure of lumber as a guide to business analysis. Results showed that sawing pattern from small logs less than 15cm in diameter was necessary to cut 9cm by 9cm square per one log in order to obtain high lumber recovery and provide for wide market needs. The total lumber yield of squares plus side boards was 56 percent to 58 percent from small logs and the yield for log sweep in 30 percent decreased by 24.5 percent in sawing production, compared to yield for straight logs. In sawing efficiency, production of lumber by twin band saw could be improved 238 percent higher than lumber of the same species produced by conventional sawmilling methods, and sawing accuracy with twin band saw was much higher at the lumber production than band saw. Lumber from the small larch logs has shown 70 knots per $m^2$ on its faces and also lumber showed lots of face checkings by air drying on the yard, compared to other species. MOR in bending of lumber in full size from small logs of larch was found ranging from 380kg/$cm^2$ to 460kg/$cm^2$, resulting in 40 percent less than the strength from clear small specimens. In lumber containing knots, cross grain, etc, longitudinal stress wave speed was delayed about 48 percent by defects in lumber from both larch and pitch pine logs. The surveyed sample sawmills consumed the domestic logs at the rate of 54 percent to 84 percent in the total timber consumption, showing high consumption at mills located in the mountains.

  • PDF

The estimated drying schedule of Fagaceae four species grown in Kangwon-Do (강원도산(江原道産) 참나무과(科) 4 수종(樹種)의 추정건조(推定乾燥)스케쥴)

  • Park, Jong-Su;Kim, Su-Chang
    • Journal of Forest and Environmental Science
    • /
    • v.10 no.1
    • /
    • pp.38-48
    • /
    • 1994
  • This study was carried out to estimate drying schedule of Fagaceae four species grown in Kangwon-Do by oven-drying at $100^{\circ}C$ which aimed to elucidate the characteristics such as current moisture content, drying process, initial check, collapse and internal check during drying. The results were summerized as follows ; Current moisture content of each board showed a rapid drying curve with the hight initial moisture content of board and species with the high initial moisture content took long to do drying. Appearance of checks for Quercus variabilis were extremely severe and estimated schedule was $T_5-C_2$. The shrinkage rate of grain direction was in the order of tangential direction > radial direction > longitudial direction and the shrinkage rate of oven-drying at $100^{\circ}C$ was bigger than normal shrinkage rate.

  • PDF

Lateral Strength of Double-Bolt Joints to the Larix Glulam according to Bolt Spacing (볼트 간격에 따른 낙엽송 집성재 이중 볼트접합부의 전단강도)

  • Kim, Keon-Ho;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.1-8
    • /
    • 2008
  • The lateral strength test of bending type was done to investigate the lateral capacity of the double bolt connection of domestic larix glulam according to bolt spacing. In the shear specimen, which is bolted connection in the inserted plate type, the hole of bolt was made, changing the diameter of bolt (12 mm and 16 mm), the number of bolt (single bolt : control and double bolt), the direction of bolt row (in parallel to grain : Type-A and in perpendicular to grain : Type-B) and the bolt spacing (Type-A : 4 d and 7 d and Type-B : 3 d and 5 d). Lateral capacity and failure mode of bolt connection were compared according to conditions. In prototype design (KBCS, 2000), the reduction factor of the allowable shear resistance that the bolt spacing is reduced was calculated. The results were as follows. 1) Bearing stress per bolt in the single and double bolt connection of Type-A was directly proportional to bolt diameter and bolt spacing. Bearing stress of Type-B decreased as bolt diameter was increased, and decreased by 2~10% when bolt diameter was increased. 2) In the single bolt connection and the double bolt connection of Type-A, the splitted failure was formed in the edge direction. When the bolt spacing was 3 d in Type-B, bolt was yielded more in the part of tension than in the part of compression, and the splitted failure started at the bolt in the part of tension. In the 5 d spacing specimen, the bolt in the part of tension was yielded similarly to bolt in the part of compression, and the splitted failure started in the part of compression. 3) In the prototype design, the reduction factor was calculated by non-dimensionizing the yielding load in the standard of bolt spacing (Type A : 7 d and Type B : 5 d). In 12 mm bolt connection, the reduction factor of bolt spacing 4 d (type-A) and single bolt connection was 0.87 and 0.55, respectively, and the reduction factor of bolt spacing 3 d (Type-B) and single bolt connection was 0.91 and 0.55, respectively. In 16 mm bolt connection, the reduction factor of bolt spacing 4 d (type-A) and single bolt connection was 0.96 and 0.76, respectively, and the reduction factor of bolt spacing 3 d (Type-B) and single bolt connection was 0.91 and 0.77, respectively.