• Title/Summary/Keyword: wood charcoal

Search Result 141, Processing Time 0.031 seconds

Effect of Rice Bran and Wood Charcoal on Soil Properties and Yield of Continuous Cropping of Red Pepper

  • Won, J.G.;Jang, K.S.;Hwang, J.E.;Kwon, O.H.;Jeon, S.G.;Park, S.G.;Park, K.C.;Suh, Y.J.
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.spc
    • /
    • pp.218-221
    • /
    • 2011
  • To improve the soil properties of physical and microbial community rice bran and wood charcoal were applied in the continuously cultivated plastic film house soil. Soil physical properties were improved by application of rice bran and charcoal compared to chemical fertilizer application (control) by 8~14% in bulk density and 5~9% in soil porosity. Changes in the biological ratio indexes of fatty acids in the soils were detected depending on the inputted materials. Especially in application of rice bran including mixture with charcoal, much more fungi and less bacteria were detected and the ratio of fungi to bacteria was increased, suggesting the more organic carbon metabolically active in these treatments. The high ratio of aerobe to anaerobe suggested the better aerobic conditions were in the soil inputted wood charcoal. From these results, it is important and possible to select some materials for the organic pepper cultivation, which may improve the poor condition soil.

Vapor Sorption Property of Charcoal-based Loess Composites (숯과 황토 복합소재의 흡착성능)

  • Lee, Won-Hee
    • Journal of the Korea Furniture Society
    • /
    • v.17 no.3
    • /
    • pp.87-94
    • /
    • 2006
  • The purpose of this study was to evaluate the relationships between the mixing ratio and water vapor sorption property of charcoal-based loess composites for furniture & building materials with environmental friendly. Charcoal-based loess composite can be easily made by blending method with water. But the composites had much brittle fracture pattern with the increase of charcoal content. That is due to the lack of loess that takes linkage role of composites. In water vapor sorption properties, adsorption ability of charcoal was about six times higher than that of loess. Therefore, vapor sorption ability was maximum at the mixture ratio of charcoal 80% and loess 20%. It is considered that wood charcoal based inorganic composite materials can be used for various purposes as a building interior & exterior and furniture members.

  • PDF

Analysis of Arginine, Glucose, Sucrose, and Polyethylene Glycols using a Wood Charcoal Matrix for MALDI-MS

  • Lee, Sun-Young;Kim, Jin-Hee;Yang, Hyo-Jik;Shin, Seong-Jae;Hong, Jang-Mi;Kim, Jeong-Kwon
    • Mass Spectrometry Letters
    • /
    • v.1 no.1
    • /
    • pp.33-36
    • /
    • 2010
  • Wood charcoal was investigated to determine its potential as an alternative matrix for matrix-assisted laser desorption/ionization of various samples. Wood charcoal was an effective matrix for analyzing glucose, sucrose, arginine, and polyethylene glycols (PEGs), with detection levels of 100 pmol for glucose, 1 nmol for sucrose, 100 pmol for arginine, 100 pmol for PEG 400, 1 pmol for PEG 1540, and 10 pmol for PEG 3350. No analyte signal was observed for peptides or proteins.

Removal of Air Pollutants from Charcoal Production Process Exhaust (숯 제조공정에서 발생하는 대기오염물질의 제거기술)

  • Park, Seong-Kyu;Choi, Sang-Jin;Kim, Daekuen;Hwang, Ui-Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.4
    • /
    • pp.350-361
    • /
    • 2014
  • Exhaust gas containing wood tar of high concentration is discharged from charcoal production kilns. The large amount of emissions are often found by operational failure. The purpose of this study is to investigate the performance of an integrated treatment system in treating charcoal production exhaust. The system, which combined a tar collection device and a post-combustion unit, was proposed to remove moisture, wood tar, particulate matter, and other gas-phase pollutants (CO, $CH_4$, total hydrogen carbons) from exhaust gases. Heat recovery units were also applied in the system to utilize waste heat.

Changes of Chemical Bond in Woody Charcoal from Different Carbonization Temperatures (목질탄화물 내의 화학 결합 변화)

  • Jo, Tae-Su;Lee, Oh-Kyu;Choi, Joon-Weon;Cho, Sung-Taig;Kim, Suk-Kuwon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.87-93
    • /
    • 2009
  • Properties and chemical bonding of wood charcoal were investigated to understand the chemistry occurring in wood carbonization. From the pH changes of wood charcoal, it is revealed that it becomes acidic to weakly basic for charcoal carbonized at about $300^{\circ}C$, whereas it turns to basic at higher carbonization temperature higher than $600^{\circ}C$. Also, the ratio of carbon atoms in the charcoal was increased with increasing the carbonization temperature, while those of oxygen and hydrogen atoms. This tendency was significant when the carbonization temperature was increased up to $600^{\circ}C$ and the ratio changes of the atoms became stable at above $600^{\circ}C$. In the changes of chemical bonding, the ratio of C-C bonding was increased and those of C-O-H and C-O-R bonding was decreased significantly. It is considered that bondings connected to oxygen atoms tends to be broken, and the ratio of C-C bonding increased. Consequently, it is expected that this change may causes occurrence of new functional groups. In addition to that, it seems to be that the chemical bondings undergo the partial decomposition, formation, and recombination steps, Because ratio of C=O bonding tended to be increased or decreased by increasing the carbonization temperature. This understanding of chemical bond changes in charcoal can be a compensative consideration on the knowledges made only by physical parameters in the properties of micro-pore which has limited to explain the phenomenon. Also, it is considered that this can be treated as a basic knowledge for upgrading and development of use of wood charcoal.

Assessing the Formation of Polycyclic Aromatic Hydrocarbons in Grilled Beef Steak and Beef Patty with Different Charcoals by the Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) Method with Gas Chromatography-Mass Spectrometry

  • Ali Samet Babaoglu
    • Food Science of Animal Resources
    • /
    • v.43 no.5
    • /
    • pp.826-839
    • /
    • 2023
  • This study investigated the effects of different charcoals on the occurrence of 16 polycyclic aromatic hydrocarbons (PAHs) in grilled beef steaks and beef patties. Seven different charcoals were used as follows: from oak wood (C1), from orange wood (C2), from Valonia oak wood (C3), from Marabu wood (C4), extruded charcoal from beech wood (C5), from coconut shells (C6), and from hazelnut shells (C7). The grilling times for each charcoal type were 6 min for the beef patties and 7 min for the beef steaks, until the internal temperature reached at least 74℃. The total concentration of 16 PAHs (PAH16) in beef steaks grilled with C1 (35.75 ㎍/kg) and C7 (36.39 ㎍/kg) was higher than that of C3 (23.80 ㎍/kg) and C6 (24.48 ㎍/kg; p<0.05). The highest amounts of PAH16 (216.40 ㎍/kg) were determined in the beef patty samples grilled using C5 (p<0.05). The summation of benzo[a]anthracene, chrysene, benzo[b]fluoranthene and benzo[a]pyrene, referred to as PAH4, was not detected in any of the beef steaks, whereas it was determined in the beef patties grilled with C2 (7.72 ㎍/kg) and C5 (22.95 ㎍/kg; p<0.05). The PAH16 concentrations of the beef patty samples in each charcoal group were significantly higher compared to the beef steaks (p<0.05). To avoid the formation of high PAH levels, the use of extruded charcoal and hazelnut shell charcoal should therefore be avoided when charcoal grilling beef steaks and beef patties, and low-fat meat products should be preferred.

Characteristics of Carbonized Biomass Produced in a Manufacturing Process of Wood Charcoal Briquettes Using an Open Hearth Kiln (평로탄화로를 이용한 성형목탄 제조공정에서 생산된 탄화 바이오매스의 특성)

  • JU, Young Min;LEE, Hyung Won;KIM, Ah-ran;JEONG, Hanseob;CHEA, Kwang-Seok;LEE, Jaejung;AHN, Byoung-Jun;LEE, Soo Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.2
    • /
    • pp.181-195
    • /
    • 2020
  • Characteristics of carbonized biomass obtained from a Wood charcoal briquette manufacturing process using an open hearth kiln are analyzed in this research, and differences in the characteristics based on the results of a mechanical screening process and the position within the kiln. One type of biomass and five types of carbonized biomass were collected from a Wood charcoal briquette manufacturer. After screening and grinding processes were performed on samples of 1 type of biomass and 5 types of carbonized biomass extracted from a Wood charcoal briquettes manufacturer to classify by particle size, fixed carbon, ash, volatile matters, elemental composition, and high heating value (HHV) were measured. Experimental results showed that the carbonized biomass collected from the middle layer had the highest HHV, 20.4 MJ/kg, and therefore had the highest fuel quality. In terms of particle size, the carbonized biomass below 100 mesh had the lowest ash content and the highest HHV, carbon content, and fixed carbon content. Correlation analyses showed that ash content had negative correlations with HHV, volatile matters, fixed carbon, and carbon content, which suggested that ash content affected negatively on fuel quality.

Analysis of Structure and Physical and Chemical Properties of the Carbonized Pine Wood (Pinus densiflora Sieb. et Zucc.) Materials - Pyrolytic Behavior of Pine Wood Dust - (가열처리 및 탄화처리 소나무재(Pinus densiflora Sieb. et Zucc.)의 구조 및 물리·화학적 특성(III) - 소나무재 톱밥의 열분해 반응 -)

  • Lee, In-Ja;Lee, Won-Hee
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.3
    • /
    • pp.266-274
    • /
    • 2014
  • To extend the understanding of the pyrolysis mechanism of wood, we have investigated wood dust charcoal and condensate of volatile organic compounds (VOC) obtained during the pyrolysis of red pine (Pinus densiflora Sieb. et Zucc.) at $180{\sim}450^{\circ}C$ using elemental analysis, IR and GC/Mass. The effect of activation process on the charcoal structure also has been studied by comparing elemental analysis and IR data of charcoal carbonated at $600^{\circ}C$ and charcoals activated at $750^{\circ}C$. The results show that pyrolysis of wood has mainly started near at $240^{\circ}C$ and its chemical components did not changed much up to $270^{\circ}C$. However, the element contents and IR spectra drastically changed at $300^{\circ}C$. The fact that IR peaks related to the aromatic ring of lignin are observed in the charcoal pyrolized at $450^{\circ}C$ indicates that a small part of lignin still remains at this temperature. The chemical structure of the activated charcoal seems almost unaffected by the activation time.

Properties of Board Manufactured from Sawdust, Ricehusk and Charcoal (톱밥과 왕겨 및 숯을 이용하여 제조한 보드의 성질)

  • HWANG, Jung-Woo;OH, Seung-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.1
    • /
    • pp.61-75
    • /
    • 2020
  • In this study, the environmentally friendly material charcoal was added to ricehusk, an agricultural by-product, and sawdust, which emerges during the sawing process, to produce board by mixing ratio and concentration levels of ricehusk and charcoal; it then investigated its physical properties for development purposes and achieved the following results. The water absorption and thickness swelling of the compounded board produced per adding ratio of ricehusk and charcoal showed a gradually decreasing tendency along with the increase in adding ratio of the charcoal, and as the density of the compounded board increased, the water absorption decreased, while the thickness swelling increased. The internal bond strength of the compounded board had indicated its highest value of 0.49N/㎟ at the density of 0.7g/㎤. This satisfied the quality standard for KSF 3104 Particleboard. The internal bond strength of the compounded board manufactured per adding ratio of ricehusk and charcoal showed a steady decrease with the decrease in the adding ratio of ricehusk, and an increase in the addingratio of the charcoal. Also, in cases when the ratio of the ricehusk and charcoal by KSF 3104 quality standard were 35:5 and 30:10, it satisfied the quality standard of 15.0-type, whereas it satisfied the 13.0-type quality standard if the ratios were 25:15 and 20:20. It showed a tendency of increasing hardness of the compounded board with the increase in density, and decreasing hardness with the increase in the adding ratio of the charcoal.

Development of Carbonization Technology and Application of Unutilized Wood Wastes(II) - Carbonization and it's properties of wood-based materials - (미이용 목질폐잔재의 탄화 이용개발(II) - 수종의 목질재료 탄화와 탄화물의 특성 -)

  • Kong, Seog-Woo;Kim, Byung-Ro
    • Journal of the Korean Wood Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.57-65
    • /
    • 2000
  • Objective of research is obtain fundamental data of carbonized wood wastes for soil condition, de-ordorization, absorption of water, carrier for microbial activity, and purifying agent for water quality of river. The carbonization technique and the properties of carbonized wood wastes(wood-based materials) were analyzed. Proximate analysis showed the wood-based materials contains 0.37~2.27% ash, 70~74% volatile matter, and 17~20% fixed carbon. As carbonization temperature was increased, the charcoal yield was decreased. However, no difference in charcoal yield was found due to time increase. The specific gravity after the carbonization decreased about 30~40% comparing to green wood. The charcoal had 1.08~4.18% ash, 5.88~13.79% volatile matter, and 80.15~90.94% fixed carbon. The pH of plywood and particleboard(pH 9 at $400^{\circ}C$, pH 10 at $600^{\circ}C$ and $800^{\circ}C$) made charcoals was higher than that of fiberboard. The water-retention capacity was not affected by the carbonization temperature and time. The water-retention capacity within 24h was about 2~2.5 times of sample weight, and the Equilibrium moisture content(EMC) became 2~10% after 24h. EMC of charcoal from the thinned trees were 9.40~11.82%($20^{\circ}C$, RH 90%), 6.87~7.61%($20^{\circ}C$, RH 65%), and 1.69~2.81%($20^{\circ}C$, RH 25%). EMC of charcoal from the wood-based materials under $20^{\circ}C$, relative humidity(RH) 90% was similar to EMC of charcoal from the thinned trees(9~11 %). However, under $20^{\circ}C$, RH 25.65%, EMC of charcoal from the wood-based materials were higher(2~3%) than EMC of charcoal from the thinned trees. Every charcoal from the wood-based materials fulfilled the criteria in JWWA K 113-1947.

  • PDF