• Title/Summary/Keyword: without oxygen.

Search Result 1,154, Processing Time 0.029 seconds

Analysis of the Characteristics of Flue Gas in Infrared Mobile Heaters for Gas Room Heating (가스난방용 적외선 히터의 연소배기가스 특성해석)

  • Kim Young-Gyu;Kwon Jeong-Rock;Kim Chung-Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.1
    • /
    • pp.66-73
    • /
    • 1998
  • This paper deals with the combustion characteristics of flue gas in infared mobile heaters. The experimental work has been performed to obtain the concentration levels and combustion characteristics of flue gas with varying chamber size and room temperature. The experimental results showed that oxygen depletion sensor device was operated at the oxygen concentration level of $18.3\%$ for all the chamber size. The combustion characteristics of oxygen and carbon dioxide show a linearity After 10 minutes the combustion property of carbon monoxide occurs at random without a level of oxygen and carbon dioxide in closed space of the heater. In these results, it is very important to prevent incomplete combustion through a sufficient ventilation, and accident prevention with a reduction of the oxygen and diffusion of toxic carbon monoxide.

  • PDF

Effects of Hyperoxia on 8-Hydroxydeoxyguanosine Formation in Carbon Monoxide Exposed Rats (일산화탄소 중독시 고압산소투여가 8-hydroxydeoxyguanosine 생성에 미치는 영향)

  • Kim, Heon;Cho, Soo-Hun;Chung, Myung-Hee
    • Journal of Preventive Medicine and Public Health
    • /
    • v.27 no.1 s.45
    • /
    • pp.84-106
    • /
    • 1994
  • Hyperbaric oxygen (HBO) therapy for carbon monoxide (CO) poisoning eventually inducing the hypoxia-reoxygenation condition, may produce oxygen free radicals, which forms 8-hydroxydeoxyguanosine (8-OH-dG) by attacking C-8 position of deoxyguanosine (dG) in DNA. Effects of oxygen partial pressure or duration of HBO therapy with or without CO poisoning on the tissue 8-OH-dG formation were investigated. Male Sprague-Dawley rats were grouped and exposed to air (control group), 4000 ppm of CO for 10 to 30 minutes (CO only group), air for 30 minutes after 30 minute exposure to 4000 ppm of CO(CO-air exposure group), HBO after 30 minute exposure to 4000 ppm of CO(CO-HBO group), or HBO therapy fo. $10{\sim}120$ minutes(HBO only group). The 8-OH-4G concentrations in the brain and the lung tissues were measured with high performance liquid chromatography and electrochemical detector (ECD). Average concentrations of the 8-OH-dG of each group were statistically compared. In the brain tissues, 8-OH-dG concentrations of the CO only group, the CO-air exposure group, and the CO-HBO group did not significantly differ from those of the control group. Similar insignificance was also found between the CO-HBO group and the HBO only groups. No appreciable dose-response relationship was observed between the 8-OH-dG concentration and the oxygen partial pressure or the duration of HBO. However, the 8-OH-dG concentrations of the 30 minute CO only group were higher than those of the CO-air exposure group (p-value<0.05). In the lung tissues, there were no significant differences between the 8-OH-dG concentrations of the control group and those of the CO only group, the CO-air exposure group, and the CO-HBO group. However, mean 8-OH-dG concentration of the CO-air exposure group was significantly higher than that of the CO only group under the same CO exposure condition(p-value<0.05). With the duration of CO exposure, the 8-OH-dG concentrations of the lung tissues decreased significantly (p-value<0.05). The concentrations of 8-OH-dG in the lung tissues proportionally increased with the duration of HBO, but no such relation was observed with the oxygen partial pressure. These results suggest that the brain may be more resistant to oxygen free radicals as compared with the lungs, and that oxygen toxicity following HBO may be affected by factors other than oxygen free radicals.

  • PDF

New Approaches for Overcoming Current Issues of Plasma Sputtering Process During Organic-electronics Device Fabrication: Plasma Damage Free and Room Temperature Process for High Quality Metal Oxide Thin Film

  • Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.100-101
    • /
    • 2012
  • The plasma damage free and room temperature processedthin film deposition technology is essential for realization of various next generation organic microelectronic devices such as flexible AMOLED display, flexible OLED lighting, and organic photovoltaic cells because characteristics of fragile organic materials in the plasma process and low glass transition temperatures (Tg) of polymer substrate. In case of directly deposition of metal oxide thin films (including transparent conductive oxide (TCO) and amorphous oxide semiconductor (AOS)) on the organic layers, plasma damages against to the organic materials is fatal. This damage is believed to be originated mainly from high energy energetic particles during the sputtering process such as negative oxygen ions, reflected neutrals by reflection of plasma background gas at the target surface, sputtered atoms, bulk plasma ions, and secondary electrons. To solve this problem, we developed the NBAS (Neutral Beam Assisted Sputtering) process as a plasma damage free and room temperature processed sputtering technology. As a result, electro-optical properties of NBAS processed ITO thin film showed resistivity of $4.0{\times}10^{-4}{\Omega}{\cdot}m$ and high transmittance (>90% at 550 nm) with nano- crystalline structure at room temperature process. Furthermore, in the experiment result of directly deposition of TCO top anode on the inverted structure OLED cell, it is verified that NBAS TCO deposition process does not damages to the underlying organic layers. In case of deposition of transparent conductive oxide (TCO) thin film on the plastic polymer substrate, the room temperature processed sputtering coating of high quality TCO thin film is required. During the sputtering process with higher density plasma, the energetic particles contribute self supplying of activation & crystallization energy without any additional heating and post-annealing and forminga high quality TCO thin film. However, negative oxygen ions which generated from sputteringtarget surface by electron attachment are accelerated to high energy by induced cathode self-bias. Thus the high energy negative oxygen ions can lead to critical physical bombardment damages to forming oxide thin film and this effect does not recover in room temperature process without post thermal annealing. To salve the inherent limitation of plasma sputtering, we have been developed the Magnetic Field Shielded Sputtering (MFSS) process as the high quality oxide thin film deposition process at room temperature. The MFSS process is effectively eliminate or suppress the negative oxygen ions bombardment damage by the plasma limiter which composed permanent magnet array. As a result, electro-optical properties of MFSS processed ITO thin film (resistivity $3.9{\times}10^{-4}{\Omega}{\cdot}cm$, transmittance 95% at 550 nm) have approachedthose of a high temperature DC magnetron sputtering (DMS) ITO thin film were. Also, AOS (a-IGZO) TFTs fabricated by MFSS process without higher temperature post annealing showed very comparable electrical performance with those by DMS process with $400^{\circ}C$ post annealing. They are important to note that the bombardment of a negative oxygen ion which is accelerated by dc self-bias during rf sputtering could degrade the electrical performance of ITO electrodes and a-IGZO TFTs. Finally, we found that reduction of damage from the high energy negative oxygen ions bombardment drives improvement of crystalline structure in the ITO thin film and suppression of the sub-gab states in a-IGZO semiconductor thin film. For realization of organic flexible electronic devices based on plastic substrates, gas barrier coatings are required to prevent the permeation of water and oxygen because organic materials are highly susceptible to water and oxygen. In particular, high efficiency flexible AMOLEDs needs an extremely low water vapor transition rate (WVTR) of $1{\times}10^{-6}gm^{-2}day^{-1}$. The key factor in high quality inorganic gas barrier formation for achieving the very low WVTR required (under ${\sim}10^{-6}gm^{-2}day^{-1}$) is the suppression of nano-sized defect sites and gas diffusion pathways among the grain boundaries. For formation of high quality single inorganic gas barrier layer, we developed high density nano-structured Al2O3 single gas barrier layer usinga NBAS process. The NBAS process can continuously change crystalline structures from an amorphous phase to a nano- crystalline phase with various grain sizes in a single inorganic thin film. As a result, the water vapor transmission rates (WVTR) of the NBAS processed $Al_2O_3$ gas barrier film have improved order of magnitude compared with that of conventional $Al_2O_3$ layers made by the RF magnetron sputteringprocess under the same sputtering conditions; the WVTR of the NBAS processed $Al_2O_3$ gas barrier film was about $5{\times}10^{-6}g/m^2/day$ by just single layer.

  • PDF

Effects of Oxygen Plasma Treatment on the Electrical Properties of Organic Photovoltaic Cells (유기 광기전 소자의 전기적 특성에 미치는 산소 플라즈마 처리의 영향)

  • Oh, Dong-Hoon;Lee, Young-Sang;Park, Hee-Doo;Shin, Jong-Yeol;Kim, Tae-Wan;Hong, Jin-Woong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.12
    • /
    • pp.2276-2280
    • /
    • 2011
  • An indium-tin-oxide (ITO) is normally used as a substrate in organic photovoltaic cells. We examined the effects of an oxygen ($O_2$) plasma treatment on the electrical properties of an organic photovoltaic cell. Experiments with four-point probe method and atomic force microscope revealed the lowest surface resistance of 17.64 ${\Omega}$/sq and the lowest average surface roughness of 1.39 nm at the plasma treatment power of 250 W. A device structure of ITO/CuPc/$C_{60}$/BCP/$Cs_2CO_3$/Al was fabricated by thermal evaporation with and without the plasma treated ITO substrate. It was found that the power conversion efficiency of the cell with the plasma treated ITO is 65 % higher than the one without the plasma treated ITO.

Effects of Okbyungpoongsan Administration on Innate and Specific Immune Response in the Mouse (옥병풍산(玉屛風散)이 생쥐의 선천성 및 특이적 면역반응에 미치는 영향)

  • Song, Bong-Keun;Jeon, Yong-Cheol
    • The Journal of Korean Medicine
    • /
    • v.20 no.2
    • /
    • pp.177-186
    • /
    • 1999
  • Okbyungpoongsan(OBPS) has long been known to have anti-allergic effect. In order to evaluate the influence on innate and specific immune response, the effects of OBPS on vascular permeability. hypersensitivities and phagocytic functions were measured. As the results, OBPS increased phagocytic activity of peritoneal macrophages in vitro and in vivo. But OBPS depressed formation of reactive oxygen intermediates(ROI) in vitro and in vivo, while the drug enhanced generation macrophages. Foot pad swelling in the mouse and contact hypersensitivity against dinitroflouorobenzene were decreased. OBPS had no effect on NK cells. But OBPS decreased vascular permeability induced by histamine without statistical significance. These results demonstrate that OBPS suppresses hypersensitivity reactions without affecting phagocytic functions and formation of ROI from macrophages. It also means that OBPS acts as a effective inducer to synthesis of nitric oxide which is effective for the infectious disease while it does damage to tissue less as it suppresses ROI, So we can conclude that OBPS could be used for the treatment of the disease related with immune function.

  • PDF

Synthesis of microporous carbons containing multi-functional groups and their electrochemical performance (다중 기능성 그룹을 포함하는 마이크로포어 탄소의 합성 및 전기화학적 특성)

  • Kim, Ki-Seok;Park, Soo-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.94.2-94.2
    • /
    • 2011
  • In this work, multi-functional groups, i.e., nitrogen and oxygen, contained microporous carbons (MF-MCs) were prepared by the one step carbonization of the poly(vinylidene chloride-co-acrylonitrile-co-methyl methacryalte) (PVDC-AN-MMA) without activation. The electrochemical performance of MF-MCs was investigated as a function of carbonization temperature. It was found that MF-MCs had a high specific surface area over $800m^2/g$ without additional activation, resulting from the micropore's formation by the release of chlorine groups. In addition, although functional groups decreased, specific surface area was increased with increasing carbonization temperature, leading to the enhanced electrochemical performance. The pore size of the carbon distributed mainly in small micropore of 1.5 to 2 nm, which was idal for aqueous electrolyte. Indeed, the unique microstructure features, i.e. high specific surface area and optimized pore size provided high energy storage capability of MF-MCs. These results indicated that the microporous features of MF-MCs lead to feasible electron transfer during charge/discharge duration and the presence of nitrogen and oxygen groups on the MF-MCs electrode led to a pseudocapacitive reaction.

  • PDF

Influence of Low Level Bio-Alcohol Fuels on Fuel Economy and Emissions in Spark Ignition Engine Vehicles (저농도 바이오알코올 혼합 연료가 스파크 점화 엔진 차량의 연비 및 배출가스에 미치는 영향)

  • CHA, GYUSOB;NO, SOOYOUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.2
    • /
    • pp.250-258
    • /
    • 2020
  • This study was conducted to analyze the impact of low level bio-alcohols that can be applied without modification of vehicles to improve air quality in Korea. The emissions and fuel economy of low level bio-alcohols mixed gasoline fuels of spark ignition vehicles, which are direct injection and port fuel injection, were studied in this paper. As a result of the evaluation, the particle number (PN) was reduced in all evaluation fuels compared to the sub octane gasoline without oxygen, but the correlation with the PN due to the increase in the oxygen content was not clear. In the CVS-75 mode, emitted CO tended to decrease compared to sub octane gasoline, but no significant correlation was found between NMHC, NOx and fuel economy. In addition, it was found that the aldehyde increased in the oxygenated fuel, and there was no difference in terms of the amount of aldehyde generated among a series of bio-alcohol mixed fuels.

Clinical Factors Associated with the Non-Operative Airway Management of Patients with Robin Sequence

  • Albino, Frank P.;Wood, Benjamin C.;Han, Kevin D.;Yi, Sojung;Seruya, Mitchel;Rogers, Gary F.;Oh, Albert K.
    • Archives of Plastic Surgery
    • /
    • v.43 no.6
    • /
    • pp.506-511
    • /
    • 2016
  • Background The indications for surgical airway management in patients with Robin sequence (RS) and severe airway obstruction have not been well defined. While certain patients with RS clearly require surgical airway intervention and other patients just as clearly can be managed with conservative measures alone, a significant proportion of patients with RS present with a more confusing and ambiguous clinical course. The purpose of this study was to describe the clinical features and objective findings of patients with RS whose airways were successfully managed without surgical intervention. Methods The authors retrospectively reviewed the medical charts of infants with RS evaluated for potential surgical airway management between 1994 and 2014. Patients who were successfully managed without surgical intervention were included. Patient demographics, nutritional and respiratory status, laboratory values, and polysomnography (PSG) findings were recorded. Results Thirty-two infants met the inclusion criteria. The average hospital stay was 16.8 days (range, 5-70 days). Oxygen desaturation (<70% by pulse oximetry) occurred in the majority of patients and was managed with temporary oxygen supplementation by nasal cannula (59%) or endotracheal intubation (31%). Seventy-five percent of patients required a temporary nasogastric tube for nutritional support, and a gastrostomy tube placed was placed in 9%. All patients continued to gain weight following the implementation of these conservative measures. PSG data (n=26) demonstrated mild to moderate obstruction, a mean apneahypopnea index (AHI) of $19.2{\pm}5.3events/hour$, and an oxygen saturation level <90% during only 4% of the total sleep time. Conclusions Nonsurgical airway management was successful in patients who demonstrated consistent weight gain and mild to moderate obstruction on PSG, with a mean AHI of <20 events/hour.

Relaxation Process of the Photoexcited State and Singlet Oxygen Generating Activity of Water-soluble meso-Phenanthrylporphyrin in a DNA Microenvironment

  • Hirakawa, Kazutaka;Ito, Yusuke;Yamada, Takashi;Okazaki, Shigetoshi
    • Rapid Communication in Photoscience
    • /
    • v.3 no.4
    • /
    • pp.81-84
    • /
    • 2014
  • To examine the microenvironmental effect of DNA on the photosensitized reaction, the electron-donor-connecting porphyrin, meso-(9-phenanthryl)-tris(N-methyl-p-pyridinio) porphyrin (Phen-TMPyP), was synthesized. Phen-TMPyP can bind to oligonucleotides with two binding modes, depending on the DNA concentration. The fluorescence lifetime measurement of Phen-TMPyP shows a shorter component than that of the reference porphyrin without the phenanthryl moiety. However, the observed value is much longer than those of previously reported similar types of electron-donor-connecting porphyrins, suggesting that electron-transfer quenching by the phenanthryl moiety is not sufficient. The fluorescence quantum yield of Phen-TMPyP ($5{\mu}M$) decreased with an increase in DNA concentration of up to $5{\mu}M$ base pair (bp), possibly due to self-quenching through an aggregation along the DNA strand, increased with an increase in DNA concentration of more than $5{\mu}M$ bp and reached a plateau. The fluorescence quantum yield of Phen-TMPyP with a sufficient concentration of DNA was larger than that of the reference porphyrin. The singlet oxygen ($^1O_2$) generating activity of Phen-TMPyP was confirmed by the near-infrared emission spectrum measurement. The quantum yield of $^1O_2$ generation was decreased by a relatively small concentration of DNA, possibly due to the aggregation of Phen-TMPyP, and recovered with a sufficient concentration of DNA. The recovered quantum yield was rather smaller than that without DNA, indicating the quenching of $^1O_2$ by DNA. These results show that a DNA strand can stabilize the photoexcited state of a photosensitizer and, in a certain case, suppresses the $^1O_2$ generation.