• Title/Summary/Keyword: withaferin A

Search Result 10, Processing Time 0.017 seconds

Withaferin A Inhibits PMA-Induced MMP-9 Expression in Human Cervical Carcinoma Caski Cells (인간 자궁경부암세포인 Caski세포에서 withaferin A에 의한 PMA 매개 matrix metalloproteinase-9의 발현 억제 효과)

  • Kim, Dong Eun
    • Journal of Life Science
    • /
    • v.23 no.3
    • /
    • pp.355-360
    • /
    • 2013
  • Withaferin A is an active component of Withania somnifera, and has anti-inflammatory, anti-tumor, and immune modulatory effects. However, the effects of withaferin A on metalloproteinase (MMP)-9 expression and activity have not been investigated. In this study, we investigated the ability of withaferin A to inhibit MMP-9 expression and activity in PMA-treated human cervical carcinoma Caski cells. Withaferin A markedly inhibited the PMA-induced MMP-9 activity in a dose-dependent manner. Withaferin A decreased not only PMA-induced MMP-9 promoter activity but also PMA-mediated MMP-9 mRNA and protein expression in Caski cells. NF-${\kappa}B$ promoter activity, which is important in MMP-9 expression, was also decreased in combined treatment with withaferin A and PMA. Furthermore, withaferin A markedly suppressed the ability of PMA-mediated migration in Caski cells. Our findings suggest that withaferin A might inhibit PMA-induced migration through the down-regulation of MMP-9 expression and activity.

Anti-cancer Effects and Molecular Mechanisms of Withaferin A (Withaferin A의 다양한 항암 효과 및 분자생화학적 기전)

  • Woo, Seon Min;Min, Kyoung-Jin;Kwon, Taeg Kyu
    • Journal of Life Science
    • /
    • v.23 no.3
    • /
    • pp.462-469
    • /
    • 2013
  • Withaferin A is a steroidal lactone purified from the Indian medicinal plant Withania somnifera. It exhibits a wide variety of activities, including anti-tumor, anti-inflammation, and immunomodulation properties. In this review, we focused on the anti-cancer effects of withaferin A. Withaferin A inhibits cell proliferation, metastasis, invasion, and angiogenesis in cancer cells. Furthermore, it sensitized irradiation, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-, and doxorubicin-mediated apoptosis. The results showed that multiple mechanisms were involved in withaferin A-mediated anti-cancer effects. First, withaferin A increased intracellular reactive oxygen species (ROS) production and induced ER stress- and mitochondria-mediated apoptosis. Second, withaferin A inhibited the signaling pathways (Jak/STAT, Akt, Notch, and c-Met), which are important in cell survival, proliferation, and metastasis. Third, it induced apoptosis and inhibited cancer cell migration through the up-regulation of prostate apoptosis protein-4 (Par-4). Finally, withaferin A up-regulated pro-apoptotic protein expression levels through the inhibition of proteasome activity. Our findings suggested that withaferin A is a potential, potent therapeutic agent.

Effect of Withaferin A on A549 Cellular Proliferation and Apoptosis in Non-small Cell Lung Cancer

  • Cai, Yong;Sheng, Zhao-Ying;Chen, Yun;Bai, Chong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.4
    • /
    • pp.1711-1714
    • /
    • 2014
  • Objective: To explore the effect of Withaferin A on A549 cellular proliferation and apoptosis in non-small cell lung cancer (NSCLC). Materials and Methods: NSCLC cell line A549 was selected to explore the effect of Withaferin A on A549 cellular proliferation, apoptosis and the PI3K/Akt signal pathway capable of regulating tumor biological behavior by assessment of cellular proliferation, cellular apoptotic rates and cellular cycling as well as by immuno-blotting. Results: Withaferin A could inhibit A549 cellular proliferation and the control rate was dosage-dependent (P<0.05), which also increased time-dependently with the same dosage of Withaferin A (P<0.05). The apoptotic indexes in A549 cells treated with 0, 2.5, 5.0, 10.0 and 20.0 ${\mu}mol{\cdot}L^{-1}$ Withaferin A for 48 h were significantly different (P<0.05). In addition, the apoptotic rates of each group in both early and advanced stages were higher than those in 0 ${\mu}mol{\cdot}L^{-1}$ (P<0.05), which were evidently higher after 48 h than those after 24 h (P<0.05). A549 cells treated by Withaferin A for 48 h were markedly lower in Bcl-2 level and obviously higher in Bax and cleaved caspase-3 levels than those treated by 0 ${\mu}mol{\cdot}L^{-1}$ Withaferin A (P<0.05), and there were significant differences among 5, 10 and 20 ${\mu}mol{\cdot}L^{-1}$ Withaferin A (P<0.05). The ratios of A549 cells treated by Withaferin A for 48 h in G0/G1 stage were higher than those in 0 ${\mu}mol{\cdot}L^{-1}$, while those in S and G2/M stages were obviously lower than those in G2/M stage, and there were significant differences in 5.0, 10.0 and 20.0 ${\mu}mol{\cdot}L^{-1}$ Withaferin A (P<0.05). Additionally, p-Akt/Akt values were in reverse association with dosage, and the differences were significant (P<0.05). Conclusion: Withaferin A can inhibit the proliferation and apoptosis of A549 cells by suppressing activation of the PI3K/Akt pathways.

Recent Advances on the Study of Hsp90 Inhibitory Natural Products (Hsp90 저해기전을 가진 천연물들의 최근 연구동향)

  • Oh, Yeon Il;Kim, Nan A;Kim, Ye Hyun;Lee, Tae Hoon;Lee, Yong Sup
    • Korean Journal of Pharmacognosy
    • /
    • v.44 no.3
    • /
    • pp.209-219
    • /
    • 2013
  • Heat shock protein 90 (Hsp90) is a molecular chaperone that assists protein folding and contributes to the stability of various proteins. It also stabilizes a number of proteins involved in tumor growth to consider it as a promising target for the treatment of cancer. Natural products have been a rich source of agents of value in medicine, therefore discovering lead compounds from them is one of important strategy in the drug development. In this regard, geldanamycin, radicicol, novobiocin and celastrol have been utilized as leads for the development of Hsp90 inhibitory anticancer agents. This review summerizes recent findings of natural products as Hsp90 inhibitiors. The Hsp90 inhibitory activities, mode of actions on Hsp90 and cytotoxicities on human cancer cell lines of natural products including bulgarialactone B, curcumin, (-)-gambogic acid, quercetin, sansalvamide A, silybin, and withaferin A were discussed.

Biotransformation of withanolides by cell suspension cultures of Withania somnifera (Dunal)

  • Sabir, Farzana;Sangwan, Rajender S.;Singh, Jyoti;Misra, Laxmi N.;Pathak, Neelam;Sangwan, Neelam S.
    • Plant Biotechnology Reports
    • /
    • v.5 no.2
    • /
    • pp.127-134
    • /
    • 2011
  • The biotransformation potential of cell suspension cultures generated from Withania somnifera leaf was investigated, using withanolides, i.e. withanolide A, withaferin A, and withanone as precursor substrates. Interestingly, the cell suspension cultures showed inter-conversion of withanolides, as well converted to some unknown compounds, released to the culture media. The bio-catalyzed withanolide was detected and quantified by TLC and HPLC, respectively. There is noticeable conversion of withanolide A to withanone, and vice versa though at a lower level. The type of reaction of this biotransformation appears to be substitution of 20-OH group to 17-OH in withanolide A. In this paper, we present for the first time the possibility of biotransformation by inter-conversion of withanolides of pharmacological importance through cell suspension culture of W. somnifera. The possible role of putative cytochrome $P_{450}$ hydroxylases is implicated in the conversion.

Elucidating Molecular Interactions of Natural Inhibitors with HPV-16 E6 Oncoprotein through Docking Analysis

  • Kumar, Satish;Jena, Lingaraja;Galande, Sneha;Daf, Sangeeta;Mohod, Kanchan;Varma, Ashok K.
    • Genomics & Informatics
    • /
    • v.12 no.2
    • /
    • pp.64-70
    • /
    • 2014
  • Human papillomavirus (HPV) infection is the leading cause of cancer mortality among women worldwide. The life-threatening infection caused by HPV demands the need for designing anticancerous drugs. In the recent years, different compounds from natural origins, such as carrageenan, curcumin, epigallocatechin gallate, indole-3-carbinol, jaceosidin, and withaferin, have been used as a hopeful source of anticancer therapy. These compounds have been shown to suppress HPV infection by different researchers. In the present study, we explored these natural inhibitors against E6 oncoprotein of high-risk HPV-16, which is known to inactivate the p53 tumor suppressor protein. A robust homology model of HPV-16 E6 was built to anticipate the interaction mechanism of E6 oncoprotein with natural inhibitory molecules using a structure-based drug designing approach. Docking analysis showed the interaction of these natural compounds with the p53-binding site of E6 protein residues 113-122 (CQKPLCPEEK) and helped the restoration of p53 functioning. Docking analysis, besides helping in silico validation of natural compounds, also helps understand molecular mechanisms of protein-ligand interactions.

In Silico Docking to Explicate Interface between Plant-Originated Inhibitors and E6 Oncogenic Protein of Highly Threatening Human Papillomavirus 18

  • Kumar, Satish;Jena, Lingaraja;Sahoo, Maheswata;Kakde, Mrunmayi;Daf, Sangeeta;Varma, Ashok K.
    • Genomics & Informatics
    • /
    • v.13 no.2
    • /
    • pp.60-67
    • /
    • 2015
  • The leading cause of cancer mortality globally amongst the women is due to human papillomavirus (HPV) infection. There is need to explore anti-cancerous drugs against this life-threatening infection. Traditionally, different natural compounds such as withaferin A, artemisinin, ursolic acid, ferulic acid, (-)-epigallocatechin-3-gallate, berberin, resveratrol, jaceosidin, curcumin, gingerol, indol-3-carbinol, and silymarin have been used as hopeful source of cancer treatment. These natural inhibitors have been shown to block HPV infection by different researchers. In the present study, we explored these natural compounds against E6 oncoprotein of high risk HPV18, which is known to inactivate tumor suppressor p53 protein. E6, a high throughput protein model of HPV18, was predicted to anticipate the interaction mechanism of E6 oncoprotein with these natural inhibitors using structure-based drug designing approach. Docking analysis showed the interaction of these natural inhibitors with p53 binding site of E6 protein residues 108-117 (CQKPLNPAEK) and help reinstatement of normal p53 functioning. Further, docking analysis besides helping in silico validations of natural compounds also helped elucidating the molecular mechanism of inhibition of HPV oncoproteins.

In silico discovery and evaluation of phytochemicals binding mechanism against human catechol-O-methyltransferase as a putative bioenhancer of L-DOPA therapy in Parkinson disease

  • Rath, Surya Narayan;Jena, Lingaraja;Bhuyan, Rajabrata;Mahanandia, Nimai Charan;Patri, Manorama
    • Genomics & Informatics
    • /
    • v.19 no.1
    • /
    • pp.7.1-7.13
    • /
    • 2021
  • Levodopa (L-DOPA) therapy is normally practised to treat motor pattern associated with Parkinson disease (PD). Additionally, several inhibitory drugs such as Entacapone and Opicapone are also cosupplemented to protect peripheral inactivation of exogenous L-DOPA (~80%) that occurs due to metabolic activity of the enzyme catechol-O-methyltransferase (COMT). Although, both Entacapone and Opicapone have U.S. Food and Drug Administration approval but regular use of these drugs is associated with high risk of side effects. Thus, authors have focused on in silico discovery of phytochemicals and evaluation of their effectiveness against human soluble COMT using virtual screening, molecular docking, drug-like property prediction, generation of pharmacophoric property, and molecular dynamics simulation. Overall, study proposed, nine phytochemicals (withaphysalin D, withaphysalin N, withaferin A, withacnistin, withaphysalin C, withaphysalin O, withanolide B, withasomnine, and withaphysalin F) of plant Withania somnifera have strong binding efficiency against human COMT in comparison to both of the drugs i.e., Opicapone and Entacapone, thus may be used as putative bioenhancer in L-DOPA therapy. The present study needs further experimental validation to be used as an adjuvant in PD treatment.