• Title/Summary/Keyword: wireline core network

Search Result 3, Processing Time 0.019 seconds

Cross-Layer and End-to-End Optimization for the Integrated Wireless and Wireline Network

  • Gong, Seong-Lyong;Roh, Hee-Tae;Lee, Jang-Won
    • Journal of Communications and Networks
    • /
    • v.14 no.5
    • /
    • pp.554-565
    • /
    • 2012
  • In this paper, we study a cross-layer and end-to-end optimization problem for the integrated wireless and wireline network that consists of one wireline core network and multiple wireless access networks. We consider joint end-to-end flow control/distribution at the transport and network layers and opportunistic scheduling at the data link and physical layers. We formulate a single stochastic optimization problem and solve it by using a dual approach and a stochastic sub-gradient algorithm. The developed algorithm can be implemented in a distributed way, vertically among communication layers and horizontally among all entities in the network, clearly showing what should be done at each layer and each entity and what parameters should be exchanged between layers and between entities. Numerical results show that our cross-layer and end-to-end optimization approach provides more efficient resource allocation than the conventional layered and separated optimization approach.

Agile Management and Interoperability Testing of SDN/NFV-Enriched 5G Core Networks

  • Choi, Taesang;Kim, TaeYeon;Tavernier, Wouter;Korvala, Aki;Pajunpaa, Jussi
    • ETRI Journal
    • /
    • v.40 no.1
    • /
    • pp.72-88
    • /
    • 2018
  • In the fifth generation (5G) era, the radio internet protocol capacity is expected to reach 20 Gb/s per sector, and ultralarge content traffic will travel across a faster wireless/wireline access network and packet core network. Moreover, the massive and mission-critical Internet of Things is the main differentiator of 5G services. These types of real-time and large-bandwidth-consuming services require a radio latency of less than 1 ms and an end-to-end latency of less than a few milliseconds. By distributing 5G core nodes closer to cell sites, the backhaul traffic volume and latency can be significantly reduced by having mobile devices download content immediately from a closer content server. In this paper, we propose a novel solution based on software-defined network and network function virtualization technologies in order to achieve agile management of 5G core network functionalities with a proof-of-concept implementation targeted for the PyeongChang Winter Olympics and describe the results of interoperability testing experiences between two core networks.

A Study on the Improvement of Transmission Speed of Data Link Processor (전술데이터링크 처리기의 전송 속도 개선에 대한 연구)

  • Lee, Kang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.6
    • /
    • pp.1069-1076
    • /
    • 2019
  • With the development of information and communication technology, the military's battle environment is changing greatly to network centric warfare in where weapon system is connected in a network and carries out mission by exchanging the real-time data. The core of the network centric warfare is Tactical Data Link(TDL) system, and subscribers of TDL exchange tactical information in real time through wireline, wireless and satellite network to share the battlefield situation. The amount of data sent and received through TDL inevitably increase as military's weapon systems equipped with TDL systems increase over time and the performance of communications equipment improves. This study proposes ways to improve the transmission speed and processing capacity of the TDL system by improving the Data Link Processor.