• 제목/요약/키워드: wireless resonant frequency

검색결과 123건 처리시간 0.029초

유전체에 삽입된 자기공진형 무선전력전송 공진기의 공진주파수 복원에 관한 연구 (Resonant Frequency Recovery of Resonator for Magnetic Resonant Wireless Power Transfer Inserted into Dielectric Material)

  • 강석현;정창원
    • 한국전자파학회논문지
    • /
    • 제29권12호
    • /
    • pp.992-995
    • /
    • 2018
  • 본 논문에서는 향후 인체 내장형 의료기기의 무선충전 및 지금까지는 발생하지 않은 다양한 유전체 내부로의 무선전력전송 시 유전체 매질의 전자기적 특성에 따른 효율 및 공진주파수 변화에 대한 공진기의 최적화 설계를 위해 공진기의 정전용량(capacitance)을 조정하는 방법과 공진기의 전후 표면에 공기층(air pocket) 설치 방법을 제안하였다. 본 연구결과는 추후 공진기를 둘러싼 다양한 유전체 환경에 대한 공진주파수의 설계 및 복원에 대한 기초 연구 자료로 활용될 수 있다.

근거리 무선전력 전송용 2MHz 공진형 class Φ2 인버터 (The Resonant class Φ2 Inverter for short range magnetic resonant wireless power transfer system)

  • 양해열;김창선
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2012년도 전력전자학술대회 논문집
    • /
    • pp.447-448
    • /
    • 2012
  • With wireless power transfer the of ECR device the designed with a high-frequency and high frequency AC power to the device that may enter the high-frequency switching inverter to be possible. In this paper, is designed to 2MHz switching frequency by using ECR device capable of 2MHz Class ${\Phi}_2$ inverter was designed as a wireless power transmission.

  • PDF

자기공진방식의 무선전력전송 시스템에서 공진 중계기 적용 여부에 따른 전력전송 효율 분석 (Analysis of the Efficiency According to Resonant Repeater Application in Magnetic Resonant Wireless Power Transfer System)

  • 백승명;김동은;손진근
    • 전기학회논문지P
    • /
    • 제67권4호
    • /
    • pp.221-226
    • /
    • 2018
  • In this paper, the power transfer efficiency analysis based on the resonant repeater in a magnetic resonance wireless power transfer system is proposed. The efficiency of the magnetic resonance method was verified by comparing the general frequency with the resonance frequency. The resonance repeater was arranged to increase the efficiency and increase the transfer distance. When using resonant repeaters, the maximum efficiency increase is about 36.23[%] and the transfer distance was extended to more than 20[cm]. Through this study, confirmed the effect of using resonance repeaters in wireless power transfer system. As a result, it can be expected that the overall technology related to wireless power transfer system will be more valuable for energy-IT technology.

근거리 무선전력전송용 공진형 Class ${\phi}_2$ 인버터 동작 특성 (The characteristics of Resonant class ${\phi}_2$ Inverter for short range wireless power transmission)

  • 양해열;박재현;김창선
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.13-14
    • /
    • 2011
  • The power conversion converter for driving the wireless power transfer system is can be into the two part of the DC power conversion rectifier and the high frequency dc-ac power conversion inverter. In this paper, The operating characteristics of the Class-${\Phi}_2$ resonant inverter have been investigated through by simulation and by experiment. It can be switched at a high frequency without the switching losses and the harmonics are reduced effectively due to the input LC filter. Its switching frequency is 1MHz and the input voltage is 96V which is the output voltage of LLC resonant converter. And its output peak voltage is 170V. The resonant inverter module operated at the commercial power source of 220V was built. And also the electromagnetic coupled resonance coils were designed for wireless power transfer with a 1MHz operating frequency. As a experimental result, the wireless power transmission was confirmed and it is varified the validity of the experiment.

  • PDF

Implementation of Effective Wireless Power Transmission Circuit for Low Power System

  • Lho, Young Hwan
    • 전기전자학회논문지
    • /
    • 제22권3호
    • /
    • pp.846-849
    • /
    • 2018
  • Wireless power transfer (WPT) is the technology that enables the power to transmit electromagnetic field to an electrical load without the use of wires. There are two kinds of magnetic resonant coupling and inductive coupling ways transmitting from the source to the output load. Compared with microwave method for energy transfer over a long distance, the magnetic resonance method has the advantages of reducing the barrier of electromagnetic wave and enhancing the efficiency of power transmission. In this paper, the wireless power transfer circuit having a resonant frequency of 13.45 MHz for the low power system is studied, and the hardware implementation is accomplished to measure the power transmission efficiency for the distance between the transmitter and the receiver.

Implementation of Wireless Power Transfer Circuit by Using Magnetic Resonant Coupling Method

  • Lho, Young-Hwan
    • 전기전자학회논문지
    • /
    • 제23권1호
    • /
    • pp.306-309
    • /
    • 2019
  • Wireless charging is a technology of transmitting power through an air gap to an electrical load for the purpose of energy dissemination. Compared to traditional charging with code, wireless power charging has many benefits of avoiding the hassle from connecting cables, rendering the design and fabrication of much smaller devices without the attachment of batteries, providing flexibility for devices, and enhancing energy efficiency, etc. A transmitting coil and a receiving coil for inductive coupling or magnetic resonant coupling methods are available for the near field techniques, but are not for the far field one. In this paper, the wireless power transfer (WPT) circuit by using magnetic resonant coupling method with a resonant frequency of 13.45 Mhz for the low power system is implemented to measure the power transmission efficiency in terms of mutual distance and omnidirectional angles of receiver.

Wireless Power Transmission between Two Metamaterial-Inspired Loops at 300 MHz

  • Kim, Gun-Young;Jung, Youn-Kwon;Lee, Bom-Son
    • Journal of electromagnetic engineering and science
    • /
    • 제10권4호
    • /
    • pp.219-223
    • /
    • 2010
  • Based on a provided closed-form wireless power transmission (WPT) efficiency formula, which may be used for any value of load, we have analyzed the WPT efficiencies between two metamaterial-inspired loop antennas in various aspects. Due to the modeling based on low frequency circuit theory, the provided formula at the center resonant frequency has been found to be accurate until when the distance between the two loop antennas increases to 15 cm (about $\lambda_0/6$ at 300 MHz). When the two loops get closer, the resonant frequency has been found to split into two in theory, simulations, and measurements. The EM-simulated and measured efficiencies at new resonant frequencies are 60.9 % and 46.3 %, respectively, at d=15 cm. With two extra rings around the loops, the maximum efficiency is enhanced to 93.7 % at d=15 cm. The effect of the additional two rings is about 30 %.

A Frequency-Tracking Method Based on a SOGI-PLL for Wireless Power Transfer Systems to Assure Operation in the Resonant State

  • Tan, Ping-an;He, Haibing;Gao, Xieping
    • Journal of Power Electronics
    • /
    • 제16권3호
    • /
    • pp.1056-1066
    • /
    • 2016
  • Wireless power transfer (WPT) technology is now recognized as an efficient means of transferring power without physical contact. However, frequency detuning will greatly reduce the transmission power and efficiency of a WPT system. To overcome the difficulties associated with the traditional frequency-tracking methods, this paper proposes a Direct Phase Control (DPC) approach, based on the Second-Order Generalized Integrator Phase-Locked Loop (SOGI-PLL), to provide accurate frequency-tracking for WPT systems. The DPC determines the phase difference between the output voltage and current of the inverter in WPT systems, and the SOGI-PLL provides the phase of the resonant current for dynamically adjusting the output voltage frequency of the inverter. Further, the stability of this control method is analyzed using the linear system theory. The performance of the proposed frequency-tracking method is investigated under various operating conditions. Simulation and experimental results convincingly demonstrate that the proposed technique will track the quasi-resonant frequency automatically, and that the ZVS operation can be achieved.

무선 전력 전송용 고출력 주파수 가변 공진기 설계 (Design of a High Power Frequency Tuneable Resonator for Wireless Power Transfer)

  • 박재수;최재훈
    • 한국전자파학회논문지
    • /
    • 제24권3호
    • /
    • pp.352-355
    • /
    • 2013
  • 본 논문에서는 자기 공명 방식의 무선 전력 전송 시스템을 위한 고출력 가변 공진기를 제안하였다. 공진 코일에는 스파이럴 구조를 사용하였으며, 공진 코일의 양 끝단에 고출력용 가변 트리머 커패시터를 연결하여 주파수 가변이 용이하도록 설계하였다. 3D 시뮬레이션 툴과 등가 회로 모델링 기법을 이용하여 커패시터 용량 변화에 따른 공진 주파수 변화와 전달특성을 예측하였다. 무선 전력 전송 시제품을 제작하여 측정한 결과, 송/수신 코일이 160 mm의 거리로 이격되어 있을 때, 3.0~4.5 MHz 범위의 공진 주파수 가변이 용이하였으며, 50%이상의 전송 효율을 얻을 수 있었다.

표준화된 인체모델을 이용한 공진형 무선전력전송 시스템의 효율 변화 및 인체 안전성 분석 (Efficiency and EMF Safety Analysis of Wireless Power Transfer System Using Standard Human Model)

  • 신한수;변진규
    • 조명전기설비학회논문지
    • /
    • 제27권11호
    • /
    • pp.96-103
    • /
    • 2013
  • In this paper, resonant wireless power transfer systems are designed with double loop resonant coils for the resonant frequency of 150kHz. The transfer efficiency characteristics is analyzed according to the coil size, and the distance and misalignment between the coils. Then the change in efficiency is investigated when a human model is located between the resonant coils using the homogeneous human phantom of IEC-62311 standard. Also, in order to assess the safety of the wireless power transfer system, the induced current density inside the human model is calculated when it is exposed to the magnetic field of a plane wave and resonant coil. Then, the results are compared with the exposure limits in the EMF (electromagnetic field) safety guidelines.