• Title/Summary/Keyword: wireless remote

Search Result 771, Processing Time 0.03 seconds

DESIGN AND IMPLEMENTATION OF METADATA MODEL FOR SENSOR DATA STREAM

  • Lee, Yang-Koo;Jung, Young-Jin;Ryu, Keun-Ho;Kim, Kwang-Deuk
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.768-771
    • /
    • 2006
  • In WSN(Wireless Sensor Network) environment, a large amount of sensors, which are small and heterogeneous, generates data stream successively in physical space. These sensors are composed of measured data and metadata. Metadata includes various features such as location, sampling time, measurement unit, and their types. Until now, wireless sensors have been managed with individual specification, not the explicit standardization of metadata, so it is difficult to collect and communicate between heterogeneous sensors. To solve this problem, OGC(Open Geospatial Consortium) has proposed a SensorML(Sensor Model Language) which can manage metadata of heterogeneous sensors with unique format. In this paper, we introduce a metadata model using SensorML specification to manage various sensors, which are distributed in a wide scope. In addition, we implement the metadata management module applied to the sensor data stream management system. We provide many functions, namely generating metadata file, registering and storing them according to definition of SensorML.

  • PDF

A versatile software architecture for civil structure monitoring with wireless sensor networks

  • Flouri, Kallirroi;Saukh, Olga;Sauter, Robert;Jalsan, Khash Erdene;Bischoff, Reinhard;Meyer, Jonas;Feltrin, Glauco
    • Smart Structures and Systems
    • /
    • v.10 no.3
    • /
    • pp.209-228
    • /
    • 2012
  • Structural health monitoring with wireless sensor networks has received much attention in recent years due to the ease of sensor installation and low deployment and maintenance costs. However, sensor network technology needs to solve numerous challenges in order to substitute conventional systems: large amounts of data, remote configuration of measurement parameters, on-site calibration of sensors and robust networking functionality for long-term deployments. We present a structural health monitoring network that addresses these challenges and is used in several deployments for monitoring of bridges and buildings. Our system supports a diverse set of sensors, a library of highly optimized processing algorithms and a lightweight solution to support a wide range of network runtime configurations. This allows flexible partitioning of the application between the sensor network and the backend software. We present an analysis of this partitioning and evaluate the performance of our system in three experimental network deployments on civil structures.

A Design of Integrated Service for ControllingNetworked Appliances on Wireless Network (인터넷 정보가전 제어를 위한 무선 통합 서비스 설계)

  • Kim Dong-Kyun;Kim Ki-Young;Kim Hee-Ja;Lee Hae Gak;Lee Sang-Jeong
    • Journal of Digital Contents Society
    • /
    • v.5 no.2
    • /
    • pp.114-120
    • /
    • 2004
  • This paper proposes the wireless integrated service for controlling networked appliances. Using wireless devices such as celluar phone and PDA which can communicate through Bluetooth and CDMA technology, home appliances are accessed and controlled from outside of house. The XML and the SMS message format is designed to specify controlling information for home appliances. Also the mobile agent and the message processor for networked appliances are implemented in the home gateway. In order to verify the proposed service system, a universal remote controller for cellular phone and PDA and network appliance simulator on web browser are implemented. Correct operation is verified through simulation using them.

  • PDF

Design and Implementation of Wire/wireless Web Service System based on SOAP (SOAP 기반의 유/무선 웹 서비스 시스템 설계 및 구현)

  • Park Jong-Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.3
    • /
    • pp.661-668
    • /
    • 2005
  • This paper designs and implements wire/wireless web service system based on SOAP for price comparison dynamically using web service technoloies in real time. This web service system composes web service client module including functions of product search, product sort, product order and UDDI retrieval browser, and server module including functions of remote procedure call for product search/order and functions of UDDI publish browser, and mobile client module supporting functions for product search/order in wireless environments. This web service system can exchange product information based on SOAP messages and support independence of platform and flexible portability in environment conforming to SOAP, WSDL and UDDI standards.

WSN-based Coastal Environment Monitoring System Using Flooding Routing Protocol (플러딩 라우팅 프로토콜을 이용한 WSN 기반의 연안 환경 모니터링 시스템)

  • Yoo, Jae-Ho;Lee, Chang-Hee;Ock, Young-Seok;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.46-52
    • /
    • 2012
  • The rapid water pollution in stream, river, lake and sea in recent years raises an urgent need for continuous monitoring and policymaking to conserve the global clean environment. In particular, the increasing water pollution in coastal marine areas adds to the importance of the environmental monitoring systems. In this paper, the mobile server is designed to gathers information of the water quality at coastal areas. The obtained data by the server is transmitted from field servers to the base station via multi-hop communication in wireless sensor network. The information collected includes dissolved oxygen(DO), hydrogen ion exponent(pH), temperature, etc. By the information provided the real-time monitoring of water quality at the coastal marine area. In addition, wireless sensor network-based flooding routing protocol was designed and used to transfer the measured water quality information efficiently. Telosb sensor node is programmed using nesC language in TinyOS platform for small scale wireless sensor network monitoring from a remote server.

M2M Architecture: Can It Realize Ubiquitous Computing in Daily life?

  • Babamir, Seyed Morteza
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.2
    • /
    • pp.566-579
    • /
    • 2012
  • Ubiquitous computing called pervasive one is based on the thought of pervading ability of computation in daily life applications. In other words, it aims to include computation in devices such as electronic equipment and automobiles. This has led to disengagement of computers from desktop form. Accordingly, the notice in ubiquitous computing being taken of a world steeped in remote and wireless computer-based-services. Handheld and wearable programmed devices such as sense and control appliances are such devices. This advancement is rapidly moving domestic tasks and life from device-and-human communication to the device-and-device model. This model called Machine to Machine (M2M) has led to acceleration of developments in sciences such as nano-science, bio-science, and information science. As a result, M2M led to appearance of applications in various fields such as, environment monitoring, agricultural, health care, logistics, and business. Since it is envisaged that M2M communications will play a big role in the future in all wireless applications and will be emerged as a progressive linkage for next-generation communications, this paper aims to consider how much M2M architectures can realize ubiquitous computing in daily life applications. This is carried out after acquainting and initiating readers with M2M architectures and arguments for M2M. Some of the applications was not achievable before but are becoming viable owing to emergence of M2M communications.

Policy for planned placement of sensor nodes in large scale wireless sensor network

  • Sharma, Vikrant;Patel, R.B;Bhadauria, HS;Prasad, D
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.3213-3230
    • /
    • 2016
  • Sensor node (SN) is a crucial part in any remote monitoring system. It is a device designed to monitor the particular changes taking place in its environs. Wireless sensor network (WSN) is a system formed by the set of wirelessly connected SNs placed at different geographical locations within a target region. Precise placement of SNs is appreciated, as it affects the efficiency and effectiveness of any WSN. The manual placement of SNs is only feasible for small scale regions. The task of SN placement becomes tedious, when the size of a target region is extremely large and manually unreachable. In this research article, an automated mechanism for fast and precise deployment of SNs in a large scale target region has been proposed. It uses an assembly of rotating cannons to launch the SNs from a moving carrier helicopter. The entire system is synchronized such that the launched SNs accurately land on the pre-computed desired locations (DLs). Simulation results show that the proposed model offers a simple, time efficient and effective technique to place SNs in a large scale target region.

Attack-Resistant Received Signal Strength based Compressive Sensing Wireless Localization

  • Yan, Jun;Yu, Kegen;Cao, Yangqin;Chen, Liang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.9
    • /
    • pp.4418-4437
    • /
    • 2017
  • In this paper a three-phase secure compressive sensing (CS) and received signal strength (RSS) based target localization approach is proposed to mitigate the effect of malicious node attack. RSS measurements are first arranged into a group of subsets where the same measurement can be included in multiple subsets. Intermediate target position estimates are then produced using individual subsets of RSS measurements and the CS technique. From the intermediate position estimates, the residual error vector and residual error square vector are formed. The least median of residual error square is utilized to define a verifier parameter. The selected residual error vector is utilized along with a threshold to determine whether a node or measurement is under attack. The final target positions are estimated by using only the attack-free measurements and the CS technique. Further, theoretical analysis is performed for parameter selection and computational complexity evaluation. Extensive simulation studies are carried out to demonstrate the advantage of the proposed CS-based secure localization approach over the existing algorithms.

Packet-Level Scheduling for Implant Communications Using Forward Error Correction in an Erasure Correction Mode for Reliable U-Healthcare Service

  • Lee, Ki-Dong;Kim, Sang-G.;Yi, Byung-K.
    • Journal of Communications and Networks
    • /
    • v.13 no.2
    • /
    • pp.160-166
    • /
    • 2011
  • In u-healthcare services based on wireless body sensor networks, reliable connection is very important as many types of information, including vital signals, are transmitted through the networks. The transmit power requirements are very stringent in the case of in-body networks for implant communication. Furthermore, the wireless link in an in-body environment has a high degree of path loss (e.g., the path loss exponent is around 6.2 for deep tissue). Because of such inherently bad settings of the communication nodes, a multi-hop network topology is preferred in order to meet the transmit power requirements and to increase the battery lifetime of sensor nodes. This will ensure that the live body of a patient receiving the healthcare service has a reduced level of specific absorption ratio (SAR) when exposed to long-lasting radiation. We propose an efficientmethod for delivering delay-intolerant data packets over multiple hops. We consider forward error correction (FEC) in an erasure correction mode and develop a mathematical formulation for packet-level scheduling of delay-intolerant FEC packets over multiple hops. The proposed method can be used as a simple guideline for applications to setting up a topology for a medical body sensor network of each individual patient, which is connected to a remote server for u-healthcare service applications.

Design and Evaluation of an Adaptive Distributed Dynamic Location Management Algorithm for Wireless Mobile Networks (무선 이동망을 위한 적응적 분산 동적 위치 관리 알고리즘의 설계 및 평가)

  • Chun, Sung-Kwang;Bae, Ihn-Han
    • The KIPS Transactions:PartC
    • /
    • v.9C no.6
    • /
    • pp.911-918
    • /
    • 2002
  • An important issue in the design of future Personal Communication Service (PCS) networks is the efficient management of location information. In this paper, we propose an adaptive distributed dynamic location management algorithm that stores the position of the mobile terminal in k of the n location information databases (LIDs). The proposed algorithm chooses adaptively k. replication factor according to both the space locality of LIDs in wireless mobile networks and the location query popularity to local mobile terminal from remote mobile terminals. The performance of proposed algorithm is evaluated by both an analytical model and a simulation. Based on the results of performance evaluation, we know that the performance of the proposed algorithm is better than that of Krishnamurthi's algorithm regardless of call-mobility ratio.