• Title/Summary/Keyword: wireless multicast systems

Search Result 31, Processing Time 0.036 seconds

On the Diversity-Multiplexing Tradeoff of Cooperative Multicast System with Wireless Network Coding

  • Li, Jun;Chen, Wen
    • Journal of Communications and Networks
    • /
    • v.12 no.1
    • /
    • pp.11-18
    • /
    • 2010
  • Diversity-multiplexing tradeoff (DMT) is an efficient tool to measure the performance of multiple-input and multiple-output (MIMO) systems and cooperative systems. Recently, cooperative multicast system with wireless network coding stretched tremendous interesting due to that it can drastically enhance the throughput of the wireless networks. It is desirable to apply DMT to the performance analysis on the multicast system with wireless network coding. In this paper, DMT is performed at the three proposed wireless network coding protocols, i.e., non-regenerative network coding (NRNC), regenerative complex field network coding (RCNC) and regenerative Galois field network coding (RGNC). The DMT analysis shows that under the same system performance, i.e., the same diversity gain, all the three network coding protocols outperform the traditional transmission scheme without network coding in terms of multiplexing gain. Our DMT analysis also exhibits the trends of the three network coding protocols' performance when multiplexing gain is changing from the lower region to the higher region. Monte-Carlo simulations verify the prediction of DMT.

Joint Subcarriers and Power Allocation with Imperfect Spectrum Sensing for Cognitive D2D Wireless Multicast

  • Chen, Yueyun;Xu, Xiangyun;Lei, Qun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.7
    • /
    • pp.1533-1546
    • /
    • 2013
  • Wireless multicast is considered as an effective transmission mode for the future mobile social contact services supported by Long Time Evolution (LTE). Though wireless multicast has an excellent resource efficiency, its performance suffers deterioration from the channel condition and wireless resource availability. Cognitive Radio (CR) and Device to Device (D2D) are two solutions to provide potential resource. However, resource allocation for cognitive wireless multicast based on D2D is still a great challenge for LTE social networks. In this paper, a joint sub-carriers and power allocation model based on D2D for general cognitive radio multicast (CR-D2D-MC) is proposed for Orthogonal Frequency-Division Multiplexing (OFDM) LTE systems. By opportunistically accessing the licensed spectrum, the maximized capacity for multiple cognitive multicast groups is achieved with the condition of the general scenario of imperfect spectrum sensing, the constrains of interference to primary users (PUs) and an upper-bound power of secondary users (SUs) acting as multicast source nodes. Furthermore, the fairness for multicast groups or unicast terminals is guaranteed by setting a lower-bound number of the subcarriers allocated to cognitive multicast groups. Lagrange duality algorithm is adopted to obtain the optimal solution to the proposed CR-D2D-MC model. The simulation results show that the proposed algorithm improves the performance of cognitive multicast groups and achieves a good balance between capacity and fairness.

Improved Connectivity-Based Reliable Multicast MAC Protocol for IEEE 802.11 Wireless LANs (IEEE 802.11 무선랜에서 신뢰성 있는 멀티캐스트 전송을 위한 연결정보 기반의 효율적인 MAC 프로토콜)

  • Choi, Woo-Yong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.36 no.2
    • /
    • pp.94-100
    • /
    • 2010
  • The reliable multicast MAC (Medium Access Control) protocol is needed to guarantee the recipients' nonerroneous reception of the multicast data frames, which can be transmitted by the AP (Access Point) in infrastructure mode IEEE 802.11 wireless LANs. Enhancing the BMMM (Batch Mode Multicast MAC) protocol, in the literature, the connectivity-based reliable multicast MAC protocol was proposed to reduce the RAK (Request for ACKnowledgement) frame transmissions and enhance the multicast MAC performance. However, the number of necessary RAK frame transmissions increases as the number of multicast recipients increases. To alleviate the problem of the larger number of RAK frame transmissions with the larger number of multicast recipients, we propose the clustering algorithm for partitioning the recipients into a small number of clusters, so that the recipients are connected each other within the same clusters. Numerical examples are presented to show the reliable multicast MAC performance improvement by the clustering algorithm.

Tighter Throughput Lower Bounds of Connectivity-Based Reliable Multicast MAC Protocol for IEEE 802.11 Wireless LANs (IEEE 802.11 무선랜에서 연결정보 기반의 신뢰성 있는 멀티캐스트 MAC 프로토콜을 위한 쓰루풋의 하한 유도)

  • Choi, Woo-Yong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.38 no.4
    • /
    • pp.285-288
    • /
    • 2012
  • The connectivity-based reliable multicast MAC protocol was proposed for IEEE 802.11 wireless LANs and the formulae for the lower bounds of the multicast downlink throughput and the uplink throughput of the connectivity-based reliable multicast MAC protocol were derived in our previous study. We provide the tighter throughput lower bounds of the connectivity-based reliable multicast MAC protocol than the lower bounds presented in our previous study.

Heuristic Algorithms for Constructing Interference-Free and Delay-Constrained Multicast Trees for Wireless Mesh Networks

  • Yang, Wen-Lin;Kao, Chi-Chou;Tung, Cheng-Huang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.2
    • /
    • pp.269-286
    • /
    • 2011
  • In this paper, we study a problem that is concerning how to construct a delay-constrained multicast tree on a wireless mesh network (WMN) such that the number of serviced clients is maximized. In order to support high-quality and concurrent interference-free transmission streams, multiple radios are implemented in each mesh node in the WMNs. Instead of only orthogonal channels used for the multicast in the previous works, both orthogonal and partially overlapping channels are considered in this study. As a result, the number of links successfully allocated channels can be expected to be much larger than that of the approaches in which only orthogonal channels are considered. The number of serviced subscribers is then increased dramatically. Hence, the goal of this study is to find interference-free and delay-constrained multicast trees that can lead to the maximal number of serviced subscribers. This problem is referred as the MRDCM problem. Two heuristics, load-based greedy algorithm and load-based MCM algorithm, are developed for constructing multicast trees. Furthermore, two load-based channel assignment procedures are provided to allocate interference-free channels to the multicast trees. A set of experiments is designed to do performance, delay and efficiency comparisons for the multicast trees generated by all the approximation algorithms proposed in this study.

QoSCM: QoS-aware Coded Multicast Approach for Wireless Networks

  • Mohajer, Amin;Barari, Morteza;Zarrabi, Houman
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.12
    • /
    • pp.5191-5211
    • /
    • 2016
  • It is essential to satisfy class-specific QoS constraints to provide broadband services for new generation networks. The present study proposes a QoS-driven multicast scheme for wireless networks in which the transmission rate and end-to-end delay are assumed to be bounded during a multiple multicast session. A distributed algorithm was used to identify a cost-efficient sub-graph between the source and destination which can satisfy QoS constraints of a multicast session. The model was then modified as to be applied for wireless networks in which satisfying interference constraints is the main challenge. A discrete power control scheme was also applied for the QoS-aware multicast model to accommodate the effect of transmission power level based on link capacity requirements. We also proposed random power allocation (RPA) and gradient power allocation (GPA) algorithms to efficient resource distribution each of which has different time complexity and optimality levels. Experimental results confirm that the proposed power allocation techniques decrease the number of unavailable links between intermediate nodes in the sub-graph and considerably increase the chance of finding an optimal solution.

A Group-aware Multicast Scheme in 60GHz WLANs

  • Park, Hyun-Hee;Kang, Chul-Hee
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.5
    • /
    • pp.1028-1048
    • /
    • 2011
  • The relation of multicast transmission and directional antennas is an open problem that has been debated for a long period of time. In this paper, we propose a group-aware multicast scheme of efficient multicast communication using the directional antennas for 60GHz millimeter wave wireless networks. For this purpose, we first derive the relation among beamwidth, distance between devices and most suitable data rate in the 60GHz frequency-based wireless network. In addition, for the dynamic beamforming of multicast communication, the x and y coordinates of any point with sender device at the center is generated, and a best-chosen group is deduced based on the Euclidean distance. Then the most suitable data rate for the group is obtained using the law of cosine. Using the Standard IEEE 802.11ad MAC protocol as an example, extensive simulation results demonstrate that the proposed scheme outperforms the existing multicast communication schemes with directional antennas under different situations.

Internet Advertising System based on Wireless LAN Access Point (무선 LAN 액세스 포인트 기반의 인터넷 광고 시스템)

  • Kim, Young-Dae;Jeong, Geun-Ho;Choi, Jae-Young
    • Journal of Internet Computing and Services
    • /
    • v.6 no.5
    • /
    • pp.143-154
    • /
    • 2005
  • This paper presents a reliable multicast transmission for the advertising-supported Access Point in which a user can use a wireless network access service through receiving the advertisement. In this paper we propose a application-layer multicast protocol that controls a transmission rate of the mobile device for the reliable multicast in wireless LAN environment. Internet advertising includes all means and medias for advertising on the Internet in order to raise sales or popularity of the products or services. Since the current Internet advertising systems are passive, the target systems are exposed to unspecified persons and its exposure rates of the advertisement are changeable and unpredictable. In this paper, we propose an Internet advertising system, with which users can access the wireless Internet without charge, advertisers can provide customized advertisement according to location, time, and categories of users, and owners of network infrastructure can manage the system with a low cost.

  • PDF

ARQ-based Multicast for OFDMA Systems (OFDMA 시스템의 ARQ 기반 멀티캐스트 방법)

  • Kim, Sung-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.1
    • /
    • pp.161-169
    • /
    • 2009
  • Multicast-based data communication is an efficient communication scheme in wireless networks where the Media Access Control (MAC) layer is based on one-hop broadcast from one source to multiple receivers. Compared with unicast, multicast over wireless channel should handle varying channel conditions of multiple users and user mobility to achieve good quality for all users. However, IEEE 802.11 does not support reliable multicast due to its inability to exchange RTS/CTS and ACK with multiple recipients. Thus, several MAC layer protocols have been proposed to provide reliable multicast. For the reliable multicast, an additional overhead is introduced and it degrades the system performance. In this paper, we propose a cross-layer design to reduce the control overhead for reliable multicast in OFDMA systems. We present an analytical formulation of the system throughput associated with the overhead.

Channel Allocation Strategies for Interference-Free Multicast in Multi-Channel Multi-Radio Wireless Mesh Networks

  • Yang, Wen-Lin;Hong, Wan-Ting
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.2
    • /
    • pp.629-648
    • /
    • 2012
  • Given a video stream delivering system deployed on a multicast tree, which is embedded in a multi-channel multi-radio wireless mesh network, our problem is concerned about how to allocate interference-free channels to tree links and maximize the number of serviced mesh clients at the same time. In this paper, we propose a channel allocation heuristic algorithm based on best-first search and backtracking techniques. The experimental results show that our BFB based CA algorithm outperforms previous methods such as DFS and BFS based CA methods. This superiority is due to the backtracking technique used in BFB approach. It allows previous channel-allocated links to have feasibility to select the other eligible channels when no conflict-free channel can be found for the current link during the CA process. In addition to that, we also propose a tree refinement method to enhance the quality of channel-allocated trees by adding uncovered destinations at the cost of deletion of some covered destinations. Our aim of this refinement is to increase the number of serviced mesh clients. According to our simulation results, it is proved to be an effective method for improving multicast trees produced by BFB, BFS and DFS CA algorithms.