• Title/Summary/Keyword: wireless multi-hop relay networks

Search Result 41, Processing Time 0.024 seconds

Centralized Downlink Scheduling using Directional Antennas in IEEE 802.16 based Wireless Mesh Networks (IEEE 802.16 기반의 무선 메쉬 네트워크에서 지향성 안테나를 사용하는 중앙 집중형 하향링크 스케줄링)

  • Lee, Sang-Joon;Lee, Hyong-Woo;Cho, Choong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.2A
    • /
    • pp.134-141
    • /
    • 2010
  • In this paper, we propose a scheduling algorithm to improve the performance of IEEE 802.16 based wireless mesh networks using directional antenna. The performance is presented in terms of throughput of system and delay between each node by varying number of users. The result show that proposed scheduling algorithm improving the performance by reducing the delay of mesh network system. Our work may be useful as a guideline to control the fairness between SSs for multi-hop systems such as multi-hop relay and mesh networks.

An Energy and Delay Efficient Hybrid MAC Protocol for Multi-Hop Wireless Sensor Networks (멀티 홉 무선센서네트워크에서 에너지와 지연에 효율적인 하이브리드 MAC 프로토콜)

  • Jeon, Jun-Heon;Kim, Seong-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.2
    • /
    • pp.471-476
    • /
    • 2015
  • In this paper, we propose an energy efficient hybrid MAC protocol for multi-hop wireless sensor networks. The proposed MAC protocol used a hybrid mechanism, in which contention-based MAC protocol and contention free MAC protocol are combined. The sensor nodes located far from the sink node usually send few data packet since they try to send measured data by themselves. So contention-based MAC protocol is useful among them. But other nodes located near sink node usually have lots of data packets since they plays as a relay node. Contention-based MAC protocol among them is not suitable. Using contention-based MAC protocol in heavy data traffic environment, packet collisions and transmission delay may increase. In this paper, slot assignment between sender nodes by sink node is used. The proposed mechanism is efficient in energy and latency. Results showed that our MAC protocol outperformed other protocol in terms of data packet delivery delay and energy consumption.

A Simple Cooperative Transmission Protocol for Energy-Efficient Broadcasting Over Multi-Hop Wireless Networks

  • Kailas, Aravind;Thanayankizil, Lakshmi;Ingram, Mary Ann
    • Journal of Communications and Networks
    • /
    • v.10 no.2
    • /
    • pp.213-220
    • /
    • 2008
  • This paper analyzes a broadcasting technique for wireless multi-hop sensor networks that uses a form of cooperative diversity called opportunistic large arrays (OLAs). We propose a method for autonomous scheduling of the nodes, which limits the nodes that relay and saves as much as 32% of the transmit energy compared to other broadcast approaches, without requiring global positioning system (GPS), individual node addressing, or inter-node interaction. This energy-saving is a result of cross-layer interaction, in the sense that the medium access control (MAC) and routing functions are partially executed in the physical (PHY) layer. Our proposed method is called OLA with a transmission threshold (OLA-T), where a node compares its received power to a threshold to decide if it should forward. We also investigate OLA with variable threshold (OLA-VT), which optimizes the thresholds as a function of level. OLA-T and OLA-VT are compared with OLA broadcasting without a transmission threshold, each in their minimum energy configuration, using an analytical method under the orthogonal and continuum assumptions. The trade-off between the number of OLA levels (or hops) required to achieve successful network broadcast and transmission energy saved is investigated. The results based on the analytical assumptions are confirmed with Monte Carlo simulations.

A Method for Constructing Multi-Hop Routing Tree among Cluster Heads in Wireless Sensor Networks (무선 센서 네트워크에서 클러스터 헤드의 멀티 홉 라우팅 트리 구성)

  • Choi, Hyekyeong;Kang, Sang Hyuk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.11
    • /
    • pp.763-770
    • /
    • 2014
  • In traditional routing protocols including LEACH for wireless sensor networks, nodes suffer from unbalanced energy consumption because the nodes require large transmission energy as the distance to the sink node increase. Multi-hop based routing protocols have been studied to address this problem. In existing protocols, each cluster head usually chooses the closest head as a relay node. We propose LEACH-CHT, in which cluster heads choose the path with least energy consumption to send data to the sink node. In our research, each hop, a cluster head selects the least cost path to the sink node. This method solves the looping problem efficiently as well as make it possible that a cluster head excludes other cluster heads placed farther than its location from the path, without additional energy consumption. By balancing the energy consumption among the nodes, our proposed scheme outperforms existing multi-hop schemes by up to 36% in terms of average network lifetime.

Cluster-based Cooperative Data Forwarding with Multi-radio Multi-channel for Multi-flow Wireless Networks

  • Aung, Cherry Ye;Ali, G.G. Md. Nawaz;Chong, Peter Han Joo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.12
    • /
    • pp.5149-5173
    • /
    • 2016
  • Cooperative forwarding has shown a substantial network performance improvement compared to traditional routing in multi-hop wireless network. To further enhance the system throughput, especially in the presence of highly congested multiple cross traffic flows, a promising way is to incorporate the multi-radio multi-channel (MRMC) capability into cooperative forwarding. However, it requires to jointly address multiple issues. These include radio-channel assignment, routing metric computation, candidate relay set selection, candidate relay prioritization, data broadcasting over multi-radio multi-channel, and best relay selection using a coordination scheme. In this paper, we propose a simple and efficient cluster-based cooperative data forwarding (CCDF) which jointly addresses all these issues. We study the performance impact when the same candidate relay set is being used for multiple cross traffic flows in the network. The network simulation shows that the CCDF with MRMC not only retains the advantage of receiver diversity in cooperative forwarding but also minimizes the interference, which therefore further enhances the system throughput for the network with multiple cross traffic flows.

System Throughput of Cognitive Radio Multi-hop Relay Networks (무선인지 멀티홉 릴레이 네트워크의 시스템 스루풋)

  • Hassan, I.;Rho, Chang-Bae;Song, Ju-Bin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.4
    • /
    • pp.29-39
    • /
    • 2009
  • The need for radio spectrum is recently considered as a huge hurdle towards the rapid development of wireless networks. Large parts of the spectrum are allocated to licensed radio services in proprietary way. However, enormous success of the wireless services and technologies in the unlicensed bands has brought new ideas and innovations. In recent years cognitive radio has gained much attention for solving the spectrum scarcity problem. It changes the way spectrum is regulated so that more efficient spectrum utilization is possible. Multi-hop relay technology on the other hand has intensively been studied in the area of ad hoc and peer-to-peer networks. But in cellular network, only recently the integration of multi-hop capability is considered to enhance the performance significantly. Multi-hop relaying can extend the coverage of the cell to provide high data rate service to a greater distance and in the shadowed regions. Very few papers still exist that combine these methods to maximize the spectrum utilization. Thus we propose a network architecture combining these two technologies in a way to maximize the system throughput. We present the throughput capacity equations for the proposed system model considering various system parameters like utilization factor by the primary users and primary users' transmission radius and through extensive numerical simulations we analyze the significance of work.

Multi-hop Relay System for Multicast and Broadcast Service over Mobile WiMAX (멀티캐스트와 브로드캐스트 서비스의 성능 향상을 위한 모바일 와이맥스 중계 시스템)

  • Cho, Chi-Hyun;Youn, Hee-Yong
    • Journal of KIISE:Information Networking
    • /
    • v.35 no.3
    • /
    • pp.227-234
    • /
    • 2008
  • The development of wireless network technology allows high data rate seamless communication irrespective of the place and time in various emerging mobile service environment. Unlike wired networks, however, wireless networks utilize expensive limited bandwidth. MBS(Multicast Broadcast Service), which is supported by mobile WiMAX system based on IEEE802.16e, overcomes this problem using a shared downlink channel for efficiently supporting a number of users. However. the coverage and throughput of the system are significantly affected by the channel condition. In this paper we propose on MBS system employing Mobile Multi-Hop Relay(MMR) and adaptive modulation and coding(AMC) scheme. The result of NS-2 computer simulation shows that the throughput and transmission time are substantially improved by the proposed approach compared to the existing MBS system.

An MPR-based broadcast scheme using 3 channels for WSNs (무선 센서 네트워크에서 3개의 채널을 이용한 MPR 기반의 브로드캐스트 기법)

  • Lee, Ji-Hye;Lee, Ki-Seok;Kim, Chee-Ha
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10B
    • /
    • pp.1043-1049
    • /
    • 2009
  • Broadcast of sink node is used for network management, data collection by query and synchronization in wireless sensor networks. Simple flooding scheme induces the broadcast storm problem. The MPR based broadcast schemes reduce redundant retransmission of broadcast packets. MPR is a set of one hop neighbor nodes which have to relay broadcast message to cover all two hop neighbors. Though MPR can reduce redundant retransmission remarkably, it still suffers from energy waste problem caused by collision and duplicate packets reception. This paper proposes a new MPR based sink broadcast scheme using 3-channel. The proposed scheme reduces energy consumption by avoiding duplicate packet reception, while increases reliability by reducing collision probability remarkably. The results of analysis and simulation show that the proposed scheme is more efficient in energy consumption compared to the MPR based scheme. The result also shows that the proposed scheme reduces delivery latency by evading a contention with other relay nodes and improves reliability of broadcast message delivery by reducing collision probability.

Throughput and Delay of Single-Hop and Two-Hop Aeronautical Communication Networks

  • Wang, Yufeng;Erturk, Mustafa Cenk;Liu, Jinxing;Ra, In-ho;Sankar, Ravi;Morgera, Salvatore
    • Journal of Communications and Networks
    • /
    • v.17 no.1
    • /
    • pp.58-66
    • /
    • 2015
  • Aeronautical communication networks (ACN) is an emerging concept in which aeronautical stations (AS) are considered as a part of multi-tier network for the future wireless communication system. An AS could be a commercial plane, helicopter, or any other low orbit station, i.e., Unmanned air vehicle, high altitude platform. The goal of ACN is to provide high throughput and cost effective communication network for aeronautical applications (i.e., Air traffic control (ATC), air traffic management (ATM) communications, and commercial in-flight Internet activities), and terrestrial networks by using aeronautical platforms as a backbone. In this paper, we investigate the issues about connectivity, throughput, and delay in ACN. First, topology of ACN is presented as a simple mobile ad hoc network and connectivity analysis is provided. Then, by using information obtained from connectivity analysis, we investigate two communication models, i.e., single-hop and two-hop, in which each source AS is communicating with its destination AS with or without the help of intermediate relay AS, respectively. In our throughput analysis, we use the method of finding the maximum number of concurrent successful transmissions to derive ACN throughput upper bounds for the two communication models. We conclude that the two-hop model achieves greater throughput scaling than the single-hop model for ACN and multi-hop models cannot achieve better throughput scaling than two-hop model. Furthermore, since delay issue is more salient in two-hop communication, we characterize the delay performance and derive the closed-form average end-to-end delay for the two-hop model. Finally, computer simulations are performed and it is shown that ACN is robust in terms of throughput and delay performances.

Power-efficient MAC protocol for energy harvesting wireless sensor networks (에너지하베스팅 무선센서네트워크를 위한 전력효율적인 매체접근제어 프로토콜)

  • Shim, Kyu-Wook;Park, Hyung-Kun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.580-581
    • /
    • 2018
  • In order to reduce end-to-end delay in EH-WSN (energy harvestin wireless sensor netowk), medium access control protocols using multi-hop routing technique have been studied. In a real environment, there are many situations where it is difficult to harvest enough energy than the energy consumed. Therefore, it is required to design a MAC protocol that allows nodes to reliably relay data without exhausting power in multi-hop transmission. In this paper, we propose a power-efficient MAC protocol that can select the relay node according to the residual power and the energy collection rate to increase network lifetime.

  • PDF