• Title/Summary/Keyword: wireless location

Search Result 1,174, Processing Time 0.026 seconds

Study on reduction of power consumption in GPS embedded terminals with periodic position fix (GPS 단말기에서의 주기적 위치 측위에 따른 전력소모 최소화 방안 연구)

  • Bae, Seong-Soo;Kim, Dong-Ku;Kim, Tae-Min;Han, Chang-Moon;Kim, Byeong-Cheol
    • Journal of Advanced Navigation Technology
    • /
    • v.11 no.3
    • /
    • pp.239-251
    • /
    • 2007
  • This thesis is about the reduction of the power consumption in GPS embedded terminals with periodic position fix to improve the time delay of position determination. In order to improve time delay of position determination during the wireless terminal is powered on, it needs to be set such that it can be periodically recalibrated by the GPS and those recalibrated values need to be saved in the terminal's memory so that it can reduce the time delay from the request of location. By using the trace of the information that's been saved in the terminal's memory, it can be set so that it'll be easier to determine whether the wireless terminal has gone into buildings and have the capability of checking if it has gone into a specific building. Likewise, while the terminal is turned on, in order calibrate the location, it needs to continuously work the GPS engine which leads to a rapid decrease in terminal's idle time. This thesis proposes some solutions regarding these issues - reducing 20 ~ 30% of the battery consumption for GPS visible situation that can occur when the wireless terminal periodically calibrates its location to determine the in-building status, and extending the idle time of the terminal by flexibly using the suggested GPS calibration time method according to wireless terminal's mobility.

  • PDF

A Hole Self-Organization Real-Time Routing Protocol for Irregular Wireless Sensor Networks (비정형적인 무선 센서 네트워크에서 음영지역 자가 구성 실시간 라우팅 프로토콜)

  • Kim, Sangdae;Kim, Cheonyong;Cho, Hyunchong;Yim, Yongbin;Kim, Sang-Ha
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.5
    • /
    • pp.281-290
    • /
    • 2014
  • The real-time data dissemination schemes exploit the spatiotemporal commuication approach which forwards data at the delivery speed calculated with the desired time deadline and the end-to-end distance in wireless sensor networks (WSNs). In practical environments, however, the performance of the real-time data dissemination might be degraded by additional and inevitable delay due to some holes. Namely, the holes lengthen the data delivery path and the spatiotemporal approach could not estimate a distance of the data delivery path. To deal with this, we propose A Hole Self-Organization Real-time Routing Protocol for Irregular Wireless Sensor Networks. In proposed protocol, nodes around holes could detect them at deploying phase. A hole is represented as a circle with center point and radius. This hole information is processed and provided as a form of location service. When a source queries a destination location, location provider replies certain points for avoiding holes as well as destination location. Thus, the source could set desired speed toward the destination via the points. Performance evaluation shows that provides better real-time service in practical environments.

A Case Study on the Implementation of a Real-time Patient Monitoring System based on Wireless Network (무선 네트워크 기반의 실시간 환자 모니터링 시스템 구축 사례 연구)

  • Choi, Jong-Soo;Kim, Dong-Soo
    • IE interfaces
    • /
    • v.23 no.3
    • /
    • pp.246-256
    • /
    • 2010
  • As wireless and mobile technologies have advanced significantly, lots of large sized healthcare organizations have implemented so called mobile hospital (m-Hospital) which provides a location independent and point of care (POC) clinical environment. Implementation of m-Hospital enhances quality of care because health professionals such as physicians and nurses can use hospital information systems at the very place where patients are located without any delay. This paper presents a real-time patient monitoring system based on wireless network technologies. A general framework for the patient monitoring process is introduced and the architecture and components of the proposed monitoring system is described. The system collects and analyzes biometric signals of in-patients who suffer from cancer. Specifically, it continuously monitors oxygen saturation of patients in bed and alarms health professionals instantly when an abnormal status of the patient is detected. The monitoring system has been used and clinically verified in a university hospital.

Efficient Localization in Wireless Sensor Networks (무선 센서 네트워크에서 효율적 측위 기법)

  • Park, Na-Yeon;Son, Cheol-Su;Kim, Won-Jung
    • Journal of Internet Computing and Services
    • /
    • v.10 no.1
    • /
    • pp.159-173
    • /
    • 2009
  • Locations of positioned nodes as well as gathered data from nodes are very important because generally multiple nodes are deployed randomly and data are gathered in wireless sensor network. Since the nodes composing wireless sensor network are low cost and low performance devices, it is very difficult to add specially designed devices for positioning into the nodes. Therefore in wireless sensor network, technology positioning nodes precisely using low cost is very important and valuable. This research proposes Cooperative Positioning System, which raises accuracy of location positioning and also can find positions on multiple sensors within limited times. And this research verifies this technology is excellent in terms of performance, accuracy, and scalability through simulation.

  • PDF

Hybrid Closed-Form Solution for Wireless Localization with Range Measurements (거리정보 기반 무선위치추정을 위한 혼합 폐쇄형 해)

  • Cho, Seong Yun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.7
    • /
    • pp.633-639
    • /
    • 2013
  • Several estimation methods used in the range measurement based wireless localization area have individual problems. These problems may not occur according to certain application areas. However, these problems may give rise to serious problems in particular applications. In this paper, three methods, ILS (Iterative Least Squares), DS (Direct Solution), and DSRM (Difference of Squared Range Measurements) methods are considered. Problems that can occur in these methods are defined and a simple hybrid solution is presented to solve them. The ILS method is the most frequently used method in wireless localization and has local minimum problems and a large computational burden compared with closed-form solutions. The DS method requires less processing time than the ILS method. However, a solution for this method may include a complex number caused by the relations between the location of reference nodes and range measurement errors. In the near-field region of the complex solution, large estimation errors occur. In the DSRM method, large measurement errors occur when the mobile node is far from the reference nodes due to the combination of range measurement error and range data. This creates the problem of large localization errors. In this paper, these problems are defined and a hybrid localization method is presented to avoid them by integrating the DS and DSRM methods. The defined problems are confirmed and the performance of the presented method is verified by a Monte-Carlo simulation.

Wireless Energy Transfer System with Multiple Coils via Coupled Magnetic Resonances

  • Cheon, Sanghoon;Kim, Yong-Hae;Kang, Seung-Youl;Lee, Myung Lae;Zyung, Taehyoung
    • ETRI Journal
    • /
    • v.34 no.4
    • /
    • pp.527-535
    • /
    • 2012
  • A general equivalent circuit model is developed for a wireless energy transfer system composed of multiple coils via coupled magnetic resonances. To verify the developed model, four types of wireless energy transfer systems are fabricated, measured, and compared with simulation results. To model a system composed of n-coils, node equations are built in the form of an n-by-n matrix, and the equivalent circuit model is established using an electric design automation tool. Using the model, we can simulate systems with multiple coils, power sources, and loads. Moreover, coupling constants are extracted as a function of the distance between two coils, and we can predict the characteristics of a system having coils at an arbitrary location. We fabricate four types of systems with relay coils, two operating frequencies, two power sources, and the function of characteristic impedance conversion. We measure the characteristics of all systems and compare them with the simulation results. The flexibility of the developed model enables us to design and optimize a complicated system consisting of many coils.

A Real-Time Localization Platform Design in WUSB Services based on IEEE 802.15.6 WBAN Protocol for Wearable Computer Systems (IEEE 802.15.6 표준 기반 무선 USB 서비스를 위한 실시간 위치인식 플랫폼 설계)

  • Hur, Kyeong;Sohn, Won-Sung
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.7
    • /
    • pp.885-890
    • /
    • 2012
  • In this Paper, we propose a Real-Time Localization Platform Built on WUSB (Wireless USB) over WBAN (Wireless Body Area Networks) protocol required for Wearable Computer systems. Proposed Real-Time Localization Platform Technique is executed on the basis of WUSB over WBAN protocol at each sensor node comprising peripherals of a wearable computer system. In the Platform, a WUSB host calculates the location of a receiving sensor node by using the difference between the times at which the sensor node received different WBAN beacon frames sent from the WUSB host. And the WUSB host interprets motion of the virtual object.

Experimental deployment and validation of a distributed SHM system using wireless sensor networks

  • Castaneda, Nestor E.;Dyke, Shirley;Lu, Chenyang;Sun, Fei;Hackmann, Greg
    • Structural Engineering and Mechanics
    • /
    • v.32 no.6
    • /
    • pp.787-809
    • /
    • 2009
  • Recent interest in the use of wireless sensor networks for structural health monitoring (SHM) is mainly due to their low implementation costs and potential to measure the responses of a structure at unprecedented spatial resolution. Approaches capable of detecting damage using distributed processing must be developed in parallel with this technology to significantly reduce the power consumption and communication bandwidth requirements of the sensor platforms. In this investigation, a damage detection system based on a distributed processing approach is proposed and experimentally validated using a wireless sensor network deployed on two laboratory structures. In this distributed approach, on-board processing capabilities of the wireless sensor are exploited to significantly reduce the communication load and power consumption. The Damage Location Assurance Criterion (DLAC) is used for localizing damage. Processing of the raw data is conducted at the sensor level, and a reduced data set is transmitted to the base station for decision-making. The results indicate that this distributed implementation can be used to successfully detect and localize regions of damage in a structure. To further support the experimental results obtained, the capabilities of the proposed system were tested through a series of numerical simulations with an expanded set of damage scenarios.

Load Management System for Reducing the Power Consumption of Mobile Communication Infrastructure (이동통신 인프라 전력절감을 위한 부하관리 시스템)

  • Lee, Seongjae;Kang, Sanggee;Lee, Kwanho;Yoo, Hosang
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.841-843
    • /
    • 2014
  • Mobile communication systems such as WCDMA, Wibro, LTE, etc are being developed to meet the explosively increasing demands for wireless data. These communication systems are using the power at all times. In general a base station has all of the communication systems mentioned above in order to provide a more convenient service to a number of users. The demands for wireless data are changed according to time and location. If the mobile communication systems are selectively operated according to the demand for wireless data then the consumed power can be saved. This paper describes the design and implementation of the load management system which controls the supplied power to the mobile communication infrastructures depending on the demand of wireless data.

  • PDF

Design and Development of Simulation Framework for Processing Window Query in Wireless Spatial Data Broadcasting Environment (무선 공간 데이터 방송 환경에서 범위 질의 처리를 위한 시뮬레이션 프레임워크의 설계와 구현)

  • Im, Seokjin;Hwang, Hee-Joung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.5
    • /
    • pp.173-178
    • /
    • 2014
  • Smart devices linked to high speed networks enable us to obtain location dependent data at anywhere and anytime. In this environment, a wireless data broadcast system can deal with enormous data request from a great number of clients effectively. In order to set up an efficient wireless data broadcast system, various data scheduling and indexing schemes have been proposed. However, a simulation framework to evaluate the schemes is not reported yet. In this paper, we design and develop a simulation framework for a wireless data broadcast system. The developed simulation framework can evaluate quickly a wireless data broadcast system and has scalability to adopt various data scheduling and indexing schemes for wireless data broadcasting.