• Title/Summary/Keyword: wireless location

Search Result 1,174, Processing Time 0.031 seconds

An Effective Location-based Packet Scheduling Scheme for Adaptive Tactical Wireless Mesh Network (무선 메쉬 네트워크의 군 환경 적용을 위한 효율적인 위치기반 패킷 스케줄링 방식)

  • Kim, Young-An;Hong, Choong-Seon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.12B
    • /
    • pp.719-727
    • /
    • 2007
  • The Wireless Mesh Network technology is able to provide an infrastructure for isolated islands, in which it is difficult to install cables or wide area such as battlefield of armed forces. Therefore, Wireless Mesh Network is frequently used to satisfy needs for internet connection and active studies and research on them are in progress However, as a result of increase in number of hops under hop-by-hop communication environment has caused a significant decrease in throughput and an increase in delay. Considering the heavy traffic of real-time data, such as voice or moving pictures to adaptive WMN, in a military environment, it is restricted for remote units to have their Mesh Node to get real-time services. Such phenomenon might cause an issue in fairness. In order to resolve this issue, the Location-based Packet Scheduling Scheme, which can provide an fair QoS to each mesh node that is connected to each echelon's AP and operates based on WRR method that gives a priority to emergency message and control packet. The performance of this scheme is validated.

A Study on the Calculation of the Number of Rescuers at Fire Sites Using Wireless Signals of Mobile Phones (화재 현장에서 휴대전화 무선 신호를 활용한 구조대원 투입 인원수 산출 연구)

  • Kim, Younghyun;Kim, Boseob;Lee, Sungwoo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.275-276
    • /
    • 2021
  • In the event of a fire in a complex, the identification of isolated people's location information is delayed, resulting in many casualties. In order to prevent such an accident, research on estimating the location of the requesters by detecting the wireless signal of the mobile phone at fire sites is in progress. The main concept is to use a wireless signal scanner to detect the wireless signal of a mobile phones at fire sites, and then position the mobile phone based on this. However, it is difficult to secure visibility at the fire site due to the smoke, and there is a difficulty in rescuing requesters in need compared with general disaster sites. Therefore, it will be one of the important issues to be solved to determine the minimum number of rescuers to be deployed according to the number and condition of the requesters. In this study, we propose a method to calculate the number of rescuers put to fire sites by using the radio signal generated from mobile phones and the information generated from the inertial sensor of the mobile phones.

  • PDF

Sensor Location Estimation in of Landscape Plants Cultivating System (LPCS) Based on Wireless Sensor Networks with IoT

  • Kang, Tae-Sun;Lee, Sang-Hyun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.226-231
    • /
    • 2020
  • In order to maximize the production of landscape plants in optimal condition while coexisting with the environment in terms of precision agriculture, quick and accurate information gathering of the internal environmental elements of the growing container is necessary. This may depend on the accuracy of the positioning of numerous sensors connected to landscape plants cultivating system (LPCS) in containers. Thus, this paper presents a method for estimating the location of the sensors related to cultivation environment connected to LPCS by measuring the received signal strength (RSS) or time of arrival TOA received between oneself and adjacent sensors. The Small sensors connected to the LPCS of container are known for their locations, but the remaining locations must be estimated. For this in the paper, Rao-Cramer limits and maximum likelihood estimators are derived from Gaussian models and lognormal models for TOA and RSS measurements, respectively. As a result, this study suggests that both RSS and TOA range measurements can produce estimates of the exact locations of the cultivation environment sensors within the wireless sensor network related to the LPCS.

PRESSURE BASED ROUTING PROTOCOL FOR UNDERWATER WIRELESS SENSOR NETWORKS: A SURVEY

  • Khasawneh, Ahmad;Bin Abd Latiff, Muhammad Shafie;Chizari, Hassan;Tariq, MoeenUddin;Bamatraf, Abdullah
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.2
    • /
    • pp.504-527
    • /
    • 2015
  • Underwater wireless sensor networks (UWSNs) are similar to the terrestrial sensor networks. Nevertheless, there are different characteristics among them such as low battery power, limited bandwidth and high variable propagation delay. One of the common major problems in UWSNs is determining an efficient and reliable routing between the source node and the destination node. Therefore, researchers tend to design efficient protocols with consideration of the different characteristics of underwater communication. Furthermore, many routing protocols have been proposed and these protocols may be classified as location-based and location-free routing protocols. Pressure-based routing protocols are a subcategory of the location-free routing protocols. This paper focuses on reviewing the pressure-based routing protocols that may further be classified into non-void avoidance protocols and void avoidance protocols. Moreover, non-void avoidance protocols have been classified into single factor based and multi factor based routing protocols. Finally, this paper provides a comparison between these protocols based on their features, performance and simulation parameters and the paper concludes with some future works on which further study can be conducted.

Robust Relative Localization Using a Novel Modified Rounding Estimation Technique

  • Cho, Hyun-Jong;Kim, Won-Yeol;Joo, Yang-Ick;Seo, Dong-Hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.2
    • /
    • pp.187-194
    • /
    • 2015
  • Accurate relative location estimation is a key requirement in indoor localization systems based on wireless sensor networks (WSNs). However, although these systems have applied not only various optimization algorithms but also fusion with sensors to achieve high accuracy in position determination, they are difficult to provide accurate relative azimuth and locations to users because of cumulative errors in inertial sensors with time and the influence of external magnetic fields. This paper based on ultra-wideband positioning system, which is relatively suitable for indoor localization compared to other wireless communications, presents an indoor localization system for estimating relative azimuth and location of location-unaware nodes, referred to as target nodes without applying any algorithms with complex variable and constraints to achieve high accuracy. In the proposed method, the target nodes comprising three mobile nodes estimate the relative distance and azimuth from two reference nodes that can be installed by users. In addition, in the process of estimating the relative localization information acquired from the reference nodes, positioning errors are minimized through a novel modified rounding estimation technique in which Kalman filter is applied without any time consumption algorithms. Experimental results show the feasibility and validity of the proposed system.

Mobile geolocation techniques for indoor environment monitoring

  • Ouni, Ridha;Zaidi, Monji;Alsabaan, Maazen;Abdul, Wadood;Alasaad, Amr
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.3
    • /
    • pp.1337-1362
    • /
    • 2020
  • Advances in localization-based technologies and the increase in ubiquitous computing have led to a growing interest in location-based applications and services. High accuracy of the position of a wireless device is still a crucial requirement to be satisfied. Firstly, the rapid development of wireless communication technologies has affected the location accuracy of radio monitoring systems employed locally and globally. Secondly, the location is determined using standard complex computing methods and needs a relatively long execution time. In this paper, two geolocalization techniques, based on trigonometric and CORDIC computing processes, are proposed and implemented for Bluetooth-based indoor monitoring applications. Theoretical analysis and simulation results are investigated in terms of accuracy, scalability, and responsiveness. They show that the proposed techniques can locate a target wireless device accurately and are well suited for timing estimation.

User Identification and Entrance/Exit Detection System for Smart Home (지능형 홈을 위한 사용자 식별 및 출입 감지 시스템)

  • Lee, Seon-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.3
    • /
    • pp.248-253
    • /
    • 2008
  • This paper presents a sensing system for smart home which can detect an location transition events such as entrance/exit of a member and identify the user in a group at the same time. The proposed system is compose of two sub-systems; a wireless sensor network system and a database server system. The wireless sensing system is designed as a star network where each of sensing modules with ultrasonic sensors and a Bluetooth RF module connect to a central receiver called Bluetooth access point. We propose a method to discriminate a user by measuring the height of the user. The differences in the height of users is a key feature for discrimination. At the same time, the each sensing module can recognize whether the user goes into or out a room by using two ultrasonic sensors. The server subsystem is a sort of data logging system which read the detected event from the access point and then write it into a database system. The database system could provide the location transition information to wide range of context-aware applications for smart home easily and conveniently. We evaluate the developed method with experiments for three subjects in a family with the installation of the developed system into a real house.

Location Estimation and Navigation of Mobile Robots using Wireless Sensor Network and Ultrasonic Sensors (무선 센서 네트워크와 초음파 센서를 이용한 이동로봇의 위치 인식과 주행)

  • Chun, Chang-Hee;Park, Jong-Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.9
    • /
    • pp.1692-1698
    • /
    • 2010
  • In this paper we use wireless sensor network and ultrasonic sensors to estimate local position of mobile robots, and to navigate it. Ultra sonic sensor is simple and accurate so it is good to use in local estimation and navigation of mobile robots. But to obtain accurate distance of two sensors they need to face each others as possible as they can. To solve this problem we rotate ultra sonic sensor which is attached to robot in 360 degrees and obtain accurate distance. We can estimate precise position of mobile robot by triangulation using obtained distance information. A mobile robot navigates using embedded encoder and compensates its coordinates by ultrasonic sensors. Results of Experiments show proposed method obtains accurate distance between sensors and coordinates of position of robot. And mobile robots can navigate designated path well.

Implementation of Location Tracking System of Wireless Access Point based PDA (PDA기반 무선 AP의 위치 탐색 시스템 구현)

  • Park, Ju-Pyung;Hong, Jin-Keun;Han, Kun-Hee;Kim, Ki-Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.4
    • /
    • pp.952-957
    • /
    • 2008
  • In this paper, explain about collect that Access Point signal and Implementation of Location Tracking System of Wireless Access Point based PDA. Collect Access point signal in PDA then Signal transmits by computer so Computer is analyze collected signal and is seen on picture. we show the Present problem of wireless LAN and position feeler algorithm through this writing paper.

A study on Location Management and Handoff control mechanism in Wireless ATM Networks (Wireless ATM 망에서의 위치관리 및 핸드오프 제어에 대한 연구)

  • 성태경;조문성;김동일;조형래
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.05a
    • /
    • pp.295-300
    • /
    • 1999
  • In Wireless ATM Networks, the mobility management of that is used currently have been studying variously. In this paper, we show the properties of location registration, update, and handoff control mechanism of these first. And then, for frequent handoff occurring condition under minimized cellular environment by degrees, we did comparison and analysis focucing on handoff delay, call-blocking rate and call-dropping rate with communication break-time and velocity variation.

  • PDF