• Title/Summary/Keyword: wireless local area network

Search Result 359, Processing Time 0.029 seconds

Adaptive Packet Scheduling Scheme to Support Real-time Traffic in WLAN Mesh Networks

  • Zhu, Rongb;Qin, Yingying;Lai, Chin-Feng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.9
    • /
    • pp.1492-1512
    • /
    • 2011
  • Due to multiple hops, mobility and time-varying channel, supporting delay sensitive real-time traffic in wireless local area network-based (WLAN) mesh networks is a challenging task. In particular for real-time traffic subject to medium access control (MAC) layer control overhead, such as preamble, carrier sense waiting time and the random backoff period, the performance of real-time flows will be degraded greatly. In order to support real-time traffic, an efficient adaptive packet scheduling (APS) scheme is proposed, which aims to improve the system performance by guaranteeing inter-class, intra-class service differentiation and adaptively adjusting the packet length. APS classifies incoming packets by the IEEE 802.11e access class and then queued into a suitable buffer queue. APS employs strict priority service discipline for resource allocation among different service classes to achieve inter-class fairness. By estimating the received signal to interference plus noise ratio (SINR) per bit and current link condition, APS is able to calculate the optimized packet length with bi-dimensional markov MAC model to improve system performance. To achieve the fairness of intra-class, APS also takes maximum tolerable packet delay, transmission requests, and average allocation transmission into consideration to allocate transmission opportunity to the corresponding traffic. Detailed simulation results and comparison with IEEE 802.11e enhanced distributed channel access (EDCA) scheme show that the proposed APS scheme is able to effectively provide inter-class and intra-class differentiate services and improve QoS for real-time traffic in terms of throughput, end-to-end delay, packet loss rate and fairness.

Miniaturization of Dual-Band PIFA for Wireless LAN Communication

  • Liu, Yang;Lee, Jaeseok;Jeon, Sinhyung;Jung, Kyung-Young;Kim, Hyunghoon;Kim, Hyeongdong
    • ETRI Journal
    • /
    • v.35 no.3
    • /
    • pp.530-533
    • /
    • 2013
  • In this letter, a simple method for reducing the size of a dual-band planar inverted-F antenna (PIFA) is described. This method is based on a coupling capacitor connected in parallel to the PIFA feed conductor. The proposed antenna occupies a small ground clearance of $10mm{\times}5mm$ and is able to provide -10-dB impedance bandwidths of 120 MHz and 760 MHz for 2.45-GHz and 5.5-GHz wireless local area network applications, respectively. The measured antenna efficiencies are 71.8% and 73.6%, averaged over the 2.45-GHz and 5.5-GHz frequency bands, respectively.

Stochastic Confidence Test on Indoor Moving Object's Tracks (옥내 이동 물체 궤적의 통계적 검정)

  • Yim, Jae-Geol;Shim, Kyu-Bark;Jeong, Seung-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.1
    • /
    • pp.97-106
    • /
    • 2009
  • WLAN(wireless local area network)-based positioning is the most attractive because it does not require any special equipments dedicated for positioning even though it is less accurate than the other strategies. Applying our WLAN-based decision tree method for indoor positioning, we obtained pedestrian's tracks, and performed stochastic confidence tests on the tracks in order to validate them.

  • PDF

Efficient Indoor Location Estimation using Multidimensional Indexes in Wireless Networks

  • Jun, Bong-Gi
    • International Journal of Contents
    • /
    • v.5 no.2
    • /
    • pp.59-63
    • /
    • 2009
  • Since it is hard to use GPS for tracking mobile user in indoor environments, much research has focused on techniques using existing wireless local area network infrastructure. Signal strength received at a fixed location is not constant, so fingerprinting approach which use pattern matching is popular. But this approach has to pay additional costs to determine user location. This paper proposes a new approach to find user's location efficiently using an index scheme. After analyzing characteristics of RF signals, the paper suggests the data processing method how the signal strength values for each of the access points are recorded in a radio map. To reduce computational cost during the location determination phase, multidimensional indexes for radio map with the important information which is the order of the strongest access points are used.

An inverted-F antenna for 2.4/5GHz WLAN applications (2.4/5GHz 무선랜 대역용 inverted-F 안테나)

  • Chae, G.S.;Cho, Y.K.
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.409-412
    • /
    • 2003
  • An inverted-F antenna for wireless local area network (WLAN) is presented. The proposed design is based on the typical dual-band planar inverted-F antennas (PIFA), which have two tunable resonant modes. The low-profile antenna is built by stamping and designed to be mounted on the metal frame of the laptop LCD panel. The obtained antenna can perform in 2.4GHz and 5GHz bands and be adopted for other wireless applications. All the measurements are performed in the actual test fixture.

  • PDF

Channel Equalization Algorithms for an WAVE System (WAVE 시스템을 위한 채널 등화 기법)

  • Kim, Yong-Sung;Seo, Chang-Woo;Hong, Dae-Ki
    • Proceedings of the KAIS Fall Conference
    • /
    • 2008.11a
    • /
    • pp.326-329
    • /
    • 2008
  • 현재 IEEE 802.11p 규격은 기존의 IEEE 802.11a 규격을 기반으로 하여 표준화가 진행되고 있다. 기존의 IEEE 802.11a 규격은 무선랜 (WLAN: Wireless Local Area Network) 규격으로서 고속으로 이동하는 차량 통신환경 즉 WAVE (Wireless Access for Vehicular Environment) 환경에 그대로 작용할 경우 수신 성능이 급격히 떨어지게 되 는 문제점이 있다. 본 논문에서는 긴 훈련 심볼 (LTS: Long Training Sequence)을 이용하는 기존의 채널 추정 기법을 기반으로 하되 WAVE 채널처럼 빠르게 변화하는 채널에 대응하기 위해 일정한 심볼 주기 마다 미드엠블 (Mid-Amble)을 삽입하는 전송구조를 제안한다. 또한, 미드엠블 사이의 심볼들의 위상과 크기를 3차원 스플라인 보간법을 적용하여 추정하는 알고리듬을 제안한다. 제안된 알고리듬의 성능실험을 위해 WAVE 채널을 모델링하였으며 이러한 채널에서 성능실험을 수행하였다. 실험결과에 의하면 제안된 알고리듬은 빠른 시변 채널에서도 매우 우수한 성능을 나타냄을 알 수 있다.

  • PDF

Multiband Meandered Monopole Antenna for Mobile Applications

  • Lee, Jae-Kwan;Pyo, Seong-Min;Kim, Young-Sik
    • ETRI Journal
    • /
    • v.32 no.3
    • /
    • pp.475-478
    • /
    • 2010
  • A multiband meandered monopole antenna is proposed for digital video broadcasting handheld (DVB-H), global positioning system, personal communications service, wireless broadband (Wibro), and wireless local area network (WLAN) applications. The proposed antenna consists of a meandered line, a shorted length strip line, and a conductor strip between a meandered line and a microstrip feed line. By tuning a short strip and a conductor, a multiband impedance matching is achieved. The proposed antenna has an omnidirectional radiation and yields an antenna gain of greater than -3 dBi in the DVB-H band and 4.5 dBi in the Wibro and WLAN bands. Details of the proposed antenna design and experimental results are presented.

Design of Baseband Analog Chain with Optimum Allocation of Gain and Filter Rejection for WLAN Applications

  • Cha, Min-Yeon;Kwon, Ick-Jin
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.4
    • /
    • pp.309-317
    • /
    • 2011
  • This paper describes a baseband analog (BBA) chain for wireless local area network (WLAN) applications. For the given specifications of the receiver BBA chain, the optimum allocation of the gain and filter rejection of each block in a BBA chain is achieved to maximize the SFDR. The fully integrated BBA chain is fabricated in 0.13 ${\mu}m$ CMOS technology. An input-referred third-order intercept point (IIP3) of 22.9 dBm at a gain of 0.5 dB and an input-referred noise voltage (IRN) of 32.2 nV/${\surd}$Hz at a gain of 63.3 dB are obtained. By optimizing the allocation of the gain and filter rejection using the proposed design methodology, an excellent SFDR performance of 63.9 dB is achieved with a power consumption of 12 mW.

Formal Modeling and Verification of an Enhanced Variant of the IEEE 802.11 CSMA/CA Protocol

  • Hammal, Youcef;Ben-Othman, Jalel;Mokdad, Lynda;Abdelli, Abdelkrim
    • Journal of Communications and Networks
    • /
    • v.16 no.4
    • /
    • pp.385-396
    • /
    • 2014
  • In this paper, we present a formal method for modeling and checking an enhanced version of the carrier sense multiple access with collision avoidance protocol related to the IEEE 802.11 MAC layer, which has been proposed as the standard protocol for wireless local area networks. We deal mainly with the distributed coordination function (DCF) procedure of this protocol throughout a sequence of transformation steps. First, we use the unified modeling language state machines to thoroughly capture the behavior of wireless stations implementing a DCF, and then translate them into the input language of the UPPAAL model checking tool, which is a network of communicating timed automata. Finally, we proceed by checking of some of the safety and liveness properties, such as deadlock-freedom, using this tool.

Performance of Multi-User MIMO/OFDM System using Cyclic Delay Diversity for Fading Channels (페이딩 채널에서 순환 지연 다이버시티를 적용한 다중 사용자 MIMO OFDM 시스템의 성능)

  • Park, In-Hwan;Kim, Yoon-Hyun;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.6
    • /
    • pp.263-268
    • /
    • 2010
  • As the demand of high quality service in next generation wireless communication systems, a high performance of data transmission requires an increase of spectrum efficiency and an improvement of error performance in wireless communication systems. In this paper, we propose a multi-user multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) system with cyclic delay diversity and block diagonalization procoding method to improve bit error rate (BER) performance with wireless local area network (WLAN) channel model C and D for 802.11n WLAN system. The results of mathlab simulation show the improvement of BER performance in 802.11n wireless indoor channel environment.