• Title/Summary/Keyword: wireless healthcare system

Search Result 202, Processing Time 0.022 seconds

Ubiquitous healthcare model based on context recognition (상황인식에 기반한 유비쿼터스 헬스케어 모델)

  • Kim, Jeong-Won
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.9
    • /
    • pp.129-136
    • /
    • 2010
  • With mobile computing, wireless sensor network and sensor technologies, ubiquitous computing services are being realized and could satisfy the feasibility of ubiquitous healthcare to everyone. This u-Healthcare service can improve life quality of human since medical service can be provided to anyone, anytime, and anywhere. To confirm the vision of u-Healthcare service, we've implemented a healthcare system for heart disease patient which is composed of two components. Front-end collects various signals such as temperature, blood pressure, SpO2, and electrocardiogram, etc. As a backend, medical information server accumulates sensing data and performs back-end processing. To simply transfer these sensing values to a medical team may be too trivial. So, we've designed a model based on context awareness for more improved medical service which is based on artificial neural network. Through rigid experiments, we could confirm that the proposed system can provide improved medical service.

Study for Chronic Diseases Patients Management System using Zigbee of based WPAN (WPAN 기반의 Zigbee를 이용한 만성질환 환자 관리 시스템에 관한 연구)

  • Park, Hung-Bog;Seo, Jung-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.4
    • /
    • pp.965-972
    • /
    • 2011
  • As an aged population has increased in Korea, the number of patients with chronic disease has soared up as well. The rapid increase of the chronic disease triggers a need of new paradigm of healthcare. In terms of data transmission of healthcare system, a use of data-transmission protocol based on bluetooth could be dismal in application of healthcare due to its postponement of connection. On the contrary, WPAN is evaluated to be proper to support the application of healthcare in restricted geographic areas. In addition, the bluetooth, a base of the current wireless network, doesn't support a special mechanism to cope up with emergent patients because of its delayed connection among devices. Against this backdrop, this study aims to design an integrated interface of multi bio-sensing and suggest a measuring and monitering system for the patients with chronic illnesses by using Zigbee of WPAN as a sufficient bandwidth is anticipated owing to frequent deliveries of complicated biological signals.

A Study on the Development of spo2 healthcare system based Zigbee (Zigbee 기반 산소포화도 헬스케어시스템에 관한 연구)

  • Jang, Hae-Suk;Kim, Jung-Eun;Choi, Young-Hee;Oh, Jae-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.392-394
    • /
    • 2007
  • Healthcare word means that supports and manages services related to health for prevent, cure, manage disease and stabilize physically or mentally. This paper presents base technology that supports a remote medical service to people including elderly and asthmatics comfortably. To be done, we gathered information which was acquired from SaO2(Saturation of Oxygen) Sensors and built HMI System based on wireless environment using these information.

  • PDF

Implementation of a Remote Bio-Equipment System for Smart Healthy Housing Properties

  • Han, Seung-Hoon
    • KIEAE Journal
    • /
    • v.14 no.6
    • /
    • pp.23-29
    • /
    • 2014
  • It is essential to investigate the structure and the main characteristics of BSN (Bio-Sensor Network) platform in built smart healthcare environment while designing healthy housing facilities. For this study, WSN (Wireless Sensor Network) data transmission technologies have been employed with medical sensors, and optimal medical devices would provide various Web 2.0 services by connecting to the WiBro network. The BSN platform normally recognizes in surroundings of WBAN (Wireless Body Area Network) or WPAN (Wireless Personal Area Network), and it is possible to manage sensor nodes by utilizing SOAP (Simple Object Access Protocol) and REST (REpresentational State Transfer). In addition, the feature of SNMP (Simple Network Management Protocol) for mobile gateway is also included for being adapted to huge network structure. Finally, BSN platform will play a role as important clues for developing personal WSN service models for smart healthy housing properties.

Security Issues, Challenges and Techniques for U-Healthcare System (유비쿼터스 환경하에서의 헬스케어 시스템에서의 보안 문제, 해결책 및 기법)

  • Yang, Ji-su;Kim, Han Kyu;Kim, Sung Min;Kim, Jung-Tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.984-985
    • /
    • 2013
  • An integrated security mechanism is one of the key challenges in the open wireless network architecture because of the diversity of the wireless network in open wireless network and the unique security mechanism used in each one of these networks. In the paper we analysed some elements to guarantee security and privacy preserving in distributed IT applications which provide some kind of support to complex medical domains.

  • PDF

Design and Implementation of Location and Activity Monitoring System Based on LoRa

  • Lin, Shengwei;Ying, Ziqiang;Zheng, Kan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.1812-1824
    • /
    • 2019
  • The location and human activity are usually used as one of the important parameters to monitor the health status in healthcare devices. However, nearly all existing location and monitoring systems have the limitation of short-range communication and high power consumption. In this paper, we propose a new mechanism to collect and transmit monitoring information based on LoRa technology. The monitoring device with sensors can collect the real-time activity and location information and transmit them to the cloud server through LoRa gateway. The user can check all his history and current information through the specific designed mobile applications. Experiment was carried out to verify the communication, power consumption and monitoring performance of the entire system. Experimental results demonstrate that this system can collect monitoring and activity information accurately and provide the long rang coverage with low power consumption.

Security issues and requirements for cloud-based u-Healthcare System (클라우드기반 u-헬스케어 시스템을 위한 보안 이슈 및 요구사항 분석)

  • Lee, Young Sil;Kim, TaeYong;Lee, HoonJae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.299-302
    • /
    • 2014
  • Due to the convergence between digital devices and the development of wireless communication technology, bit-signal sensor miniaturization, building an Electronic Medical Record (EMR) which is a digital version of a paper chart that contains all of a patient's medical history and the information of Electronic Health Record (EHR), Ubiquitous healthcare (u-Healthcare) that can monitor their health status and provide personal healthcare service anytime and anywhere. Also, the appearance of cloud computing technology is one of the factors that accelerate the development of u-healthcare service. However, if the individual information to be used maliciously during the u-healthcare service utilization, leads to serious problems directly related to the individual's life because if it goes beyond the level of simple health screening and treatment, it may not provide accurate and reliable healthcare services. For this reason, we analyzed a variety of security issues related to u-healthcare service in cloud computing environment and described about directions of secure health information sharing system construction. In addition, we suggest the future developmental direction for th activation of u-healthcare industry.

  • PDF

Improving the Simulation of a Mobile Patient Monitoring System for Node Diversification and Loss Minimization (노드 다변화 및 손실률 최소화를 위한 이동환자 상시 모니터링 시스템 시뮬레이션 개선 연구)

  • Choi, Eun Jung;Kim, Myuhng Joo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.7 no.4
    • /
    • pp.15-22
    • /
    • 2011
  • U-Healthcare service is a real-time service using the vital signs which are continuously transferred from monitoring sensors attached to mobile patients under the wireless network environments. It should monitor the health condition of mobile patients everywhere at any time. In this paper, we have improved two features of the three layered mobile patient monitoring system with load balancing ability. First, the simulation process has been improved by allowing the number of related nodes to be changed. Secondly, we have modified S node to which queue is added to reduce the loss rate of collecting data from patients during the delay of S node process. And the data from the patient with high priority can be transferred to the server immediately through the filtering function. Furthermore, we have solved the problem of redundancy in sharing information among S nodes by differentiating process time to each S node. By performing a DEVS Java-based system simulation, we have verified the efficiency of this improved system.

Property of Wireless Clip-type Pulsimeter by Using a Hall Device and a Permanent Magnet (영구자석과 홀소자를 이용한 무선 집게형 맥진기 특성 연구)

  • Yoon, Woo-Sung;Ji, Jong-Ok;Lee, Sang-Suk
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.6
    • /
    • pp.179-185
    • /
    • 2014
  • The existing USB connection type of the clip-type pulsmeter equipped with a Hall sensor and a permanent magnet does not have any error or malfunction to measure the pulse wave. The property of the wireless networking system communicating the pulse wave data through the wireless LAN communication by combination USB with Ethernet and Ethernet to Wi-Fi converting system instead of existing USB connection method was investigated. There are exited that the patient needs to stay at close site of the desktop PC without USB connector and the wireless transfer and receiver networking system has pulse wave measurement SW to receive the pulse wave data. Thus it is expected that the study becomes helpful to measure and transfer the exact pulse wave of the patient in a comfortable pose at close range.

Vital Sign Monitoring System with Routing and Query of Wireless Sensor Node on Mobile Environment (모바일 환경에서 질의응답이 가능한 무선센서노드 라우팅 생체신호 모니터링 시스템)

  • Lee, Seung-Chul;Toh, Sing-Hui;Do, Kyeong-Hoon;Chung, Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.357-360
    • /
    • 2008
  • Vital sign monitoring system using IEEE 502.IS.4 based wireless sensor network(WSN) is designed and developed on mobile environment and sensor node platform. WSN and CDMA are integrated to create a wide coverage to support various environments like inside and outside. We developed query processor to use selective any devices(ECG, Blood pressure and sugar module) and control of the self-organizing network of sensor nodes in a wireless sensor network. Vital sign from wireless medical any devices are analysed in cell phone first for real time signal analyses and the abnormal vital signs are sent and save to hospital server for detail signal processing. wireless signal traffic in wireless sensor network environment or data communication inside the cell phone is reduced.

  • PDF