• Title/Summary/Keyword: wireless data communication

Search Result 2,624, Processing Time 0.03 seconds

A Store Recommendation Procedure in Ubiquitous Market for User Privacy (U-마켓에서의 사용자 정보보호를 위한 매장 추천방법)

  • Kim, Jae-Kyeong;Chae, Kyung-Hee;Gu, Ja-Chul
    • Asia pacific journal of information systems
    • /
    • v.18 no.3
    • /
    • pp.123-145
    • /
    • 2008
  • Recently, as the information communication technology develops, the discussion regarding the ubiquitous environment is occurring in diverse perspectives. Ubiquitous environment is an environment that could transfer data through networks regardless of the physical space, virtual space, time or location. In order to realize the ubiquitous environment, the Pervasive Sensing technology that enables the recognition of users' data without the border between physical and virtual space is required. In addition, the latest and diversified technologies such as Context-Awareness technology are necessary to construct the context around the user by sharing the data accessed through the Pervasive Sensing technology and linkage technology that is to prevent information loss through the wired, wireless networking and database. Especially, Pervasive Sensing technology is taken as an essential technology that enables user oriented services by recognizing the needs of the users even before the users inquire. There are lots of characteristics of ubiquitous environment through the technologies mentioned above such as ubiquity, abundance of data, mutuality, high information density, individualization and customization. Among them, information density directs the accessible amount and quality of the information and it is stored in bulk with ensured quality through Pervasive Sensing technology. Using this, in the companies, the personalized contents(or information) providing became possible for a target customer. Most of all, there are an increasing number of researches with respect to recommender systems that provide what customers need even when the customers do not explicitly ask something for their needs. Recommender systems are well renowned for its affirmative effect that enlarges the selling opportunities and reduces the searching cost of customers since it finds and provides information according to the customers' traits and preference in advance, in a commerce environment. Recommender systems have proved its usability through several methodologies and experiments conducted upon many different fields from the mid-1990s. Most of the researches related with the recommender systems until now take the products or information of internet or mobile context as its object, but there is not enough research concerned with recommending adequate store to customers in a ubiquitous environment. It is possible to track customers' behaviors in a ubiquitous environment, the same way it is implemented in an online market space even when customers are purchasing in an offline marketplace. Unlike existing internet space, in ubiquitous environment, the interest toward the stores is increasing that provides information according to the traffic line of the customers. In other words, the same product can be purchased in several different stores and the preferred store can be different from the customers by personal preference such as traffic line between stores, location, atmosphere, quality, and price. Krulwich(1997) has developed Lifestyle Finder which recommends a product and a store by using the demographical information and purchasing information generated in the internet commerce. Also, Fano(1998) has created a Shopper's Eye which is an information proving system. The information regarding the closest store from the customers' present location is shown when the customer has sent a to-buy list, Sadeh(2003) developed MyCampus that recommends appropriate information and a store in accordance with the schedule saved in a customers' mobile. Moreover, Keegan and O'Hare(2004) came up with EasiShop that provides the suitable tore information including price, after service, and accessibility after analyzing the to-buy list and the current location of customers. However, Krulwich(1997) does not indicate the characteristics of physical space based on the online commerce context and Keegan and O'Hare(2004) only provides information about store related to a product, while Fano(1998) does not fully consider the relationship between the preference toward the stores and the store itself. The most recent research by Sedah(2003), experimented on campus by suggesting recommender systems that reflect situation and preference information besides the characteristics of the physical space. Yet, there is a potential problem since the researches are based on location and preference information of customers which is connected to the invasion of privacy. The primary beginning point of controversy is an invasion of privacy and individual information in a ubiquitous environment according to researches conducted by Al-Muhtadi(2002), Beresford and Stajano(2003), and Ren(2006). Additionally, individuals want to be left anonymous to protect their own personal information, mentioned in Srivastava(2000). Therefore, in this paper, we suggest a methodology to recommend stores in U-market on the basis of ubiquitous environment not using personal information in order to protect individual information and privacy. The main idea behind our suggested methodology is based on Feature Matrices model (FM model, Shahabi and Banaei-Kashani, 2003) that uses clusters of customers' similar transaction data, which is similar to the Collaborative Filtering. However unlike Collaborative Filtering, this methodology overcomes the problems of personal information and privacy since it is not aware of the customer, exactly who they are, The methodology is compared with single trait model(vector model) such as visitor logs, while looking at the actual improvements of the recommendation when the context information is used. It is not easy to find real U-market data, so we experimented with factual data from a real department store with context information. The recommendation procedure of U-market proposed in this paper is divided into four major phases. First phase is collecting and preprocessing data for analysis of shopping patterns of customers. The traits of shopping patterns are expressed as feature matrices of N dimension. On second phase, the similar shopping patterns are grouped into clusters and the representative pattern of each cluster is derived. The distance between shopping patterns is calculated by Projected Pure Euclidean Distance (Shahabi and Banaei-Kashani, 2003). Third phase finds a representative pattern that is similar to a target customer, and at the same time, the shopping information of the customer is traced and saved dynamically. Fourth, the next store is recommended based on the physical distance between stores of representative patterns and the present location of target customer. In this research, we have evaluated the accuracy of recommendation method based on a factual data derived from a department store. There are technological difficulties of tracking on a real-time basis so we extracted purchasing related information and we added on context information on each transaction. As a result, recommendation based on FM model that applies purchasing and context information is more stable and accurate compared to that of vector model. Additionally, we could find more precise recommendation result as more shopping information is accumulated. Realistically, because of the limitation of ubiquitous environment realization, we were not able to reflect on all different kinds of context but more explicit analysis is expected to be attainable in the future after practical system is embodied.

E-Commerce in the Historical Approach to Usage and Practice of International Trade ("무역상무(貿易商務)에의 역사적(歷史的) 어프로치와 무역취인(貿易取引)의 전자화(電子化)")

  • Tsubaki, Koji
    • THE INTERNATIONAL COMMERCE & LAW REVIEW
    • /
    • v.19
    • /
    • pp.224-242
    • /
    • 2003
  • The author believes that the main task of study in international trade usage and practice is the management of transactional risks involved in international sale of goods. They are foreign exchange risks, transportation risks, credit risk, risk of miscommunication, etc. In most cases, these risks are more serious and enormous than those involved in domestic sales. Historically, the merchant adventurers organized the voyage abroad, secured trade finance, and went around the ocean with their own or consigned cargo until around the $mid-19^{th}$ century. They did business faceto-face at the trade fair or the open port where they maintained the local offices, so-called "Trading House"(商館). Thererfore, the transactional risks might have been one-sided either with the seller or the buyer. The bottomry seemed a typical arrangement for risk sharing among the interested parties to the adventure. In this way, such organizational arrangements coped with or bore the transactional risks. With the advent of ocean liner services and wireless communication across the national border in the $19^{th}$ century, the business of merchant adventurers developed toward the clear division of labor; sales by mercantile agents, and ocean transportation by the steam ship companies. The international banking helped the process to be accelerated. Then, bills of lading backed up by the statute made it possible to conduct documentary sales with a foreign partner in different country. Thus, FOB terms including ocean freight and CIF terms emerged gradually as standard trade terms in which transactional risks were allocated through negotiation between the seller and the buyer located in different countries. Both of them did not have to go abroad with their cargo. Instead, documentation in compliance with the terms of the contract(plus an L/C in some cases) must by 'strictly' fulfilled. In other words, the set of contractual documents must be tendered in advance of the arrival of the goods at port of discharge. Trust or reliance is placed on such contractual paper documents. However, the container transport services introduced as international intermodal transport since the late 1960s frequently caused the earlier arrival of the goods at the destination before the presentation of the set of paper documents, which may take 5 to 10% of the amount of transaction. In addition, the size of the container vessel required the speedy transport documentation before sailing from the port of loading. In these circumstances, computerized processing of transport related documents became essential for inexpensive transaction cost and uninterrupted distribution of the goods. Such computerization does not stop at the phase of transportation but extends to cover the whole process of international trade, transforming the documentary sales into less-paper trade and further into paperless trade, i.e., EDI or E-Commerce. Now we face the other side of the coin, which is data security and paperless transfer of legal rights and obligations. Unfortunately, these issues are not effectively covered by a set of contracts only. Obviously, EDI or E-Commerce is based on the common business process and harmonized system of various data codes as well as the standard message formats. This essential feature of E-Commerce needs effective coordination of different divisions of business and tight control over credit arrangements in addition to the standard contract of sales. In a few word, information does not alway invite "trust". Credit flows from people, or close organizational tie-ups. It is our common understanding that, without well-orchestrated organizational arrangements made by leading companies, E-Commerce does not work well for paperless trade. With such arrangements well in place, participating E-business members do not need to seriously care for credit risk. Finally, it is also clear that E-International Commerce must be linked up with a set of government EDIs such as NACCS, Port EDI, JETRAS, etc, in Japan. Therefore, there is still a long way before us to go for E-Commerce in practice, not on the top of information manager's desk.

  • PDF

Development of Digital Transceiver Unit for 5G Optical Repeater (5G 광중계기 구동을 위한 디지털 송수신 유닛 설계)

  • Min, Kyoung-Ok;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.25 no.1
    • /
    • pp.156-167
    • /
    • 2021
  • In this paper, we propose a digital transceiver unit design for in-building of 5G optical repeaters that extends the coverage of 5G mobile communication network services and connects to a stable wireless network in a building. The digital transceiver unit for driving the proposed 5G optical repeater is composed of 4 blocks: a signal processing unit, an RF transceiver unit, an optical input/output unit, and a clock generation unit. The signal processing unit plays an important role, such as a combination of a basic operation of the CPRI interface, a 4-channel antenna signal, and response to external control commands. It also transmits and receives high-quality IQ data through the JESD204B interface. CFR and DPD blocks operate to protect the power amplifier. The RF transmitter/receiver converts the RF signal received from the antenna to AD, is transmitted to the signal processing unit through the JESD204B interface, and DA converts the digital signal transmitted from the signal processing unit to the JESD204B interface and transmits the RF signal to the antenna. The optical input/output unit converts an electric signal into an optical signal and transmits it, and converts the optical signal into an electric signal and receives it. The clock generator suppresses jitter of the synchronous clock supplied from the CPRI interface of the optical input/output unit, and supplies a stable synchronous clock to the signal processing unit and the RF transceiver. Before CPRI connection, a local clock is supplied to operate in a CPRI connection ready state. XCZU9CG-2FFVC900I of Xilinx's MPSoC series was used to evaluate the accuracy of the digital transceiver unit for driving the 5G optical repeater proposed in this paper, and Vivado 2018.3 was used as the design tool. The 5G optical repeater digital transceiver unit proposed in this paper converts the 5G RF signal input to the ADC into digital and transmits it to the JIG through CPRI and outputs the downlink data signal received from the JIG through the CPRI to the DAC. And evaluated the performance. The experimental results showed that flatness, Return Loss, Channel Power, ACLR, EVM, Frequency Error, etc. exceeded the target set value.

A Study on Establishment of the Optimum Mountain Meteorological Observation Network System for Forest Fire Prevention (산불 방지를 위한 산악기상관측시스템 구축방안)

  • Lee, Si-Young;Chung, Il-Ung;Kim, Sang-Kook
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.1
    • /
    • pp.36-44
    • /
    • 2006
  • In this study, we constructed a forest fire danger map in the Yeongdong area of Gangwon-do and Northeastern area of Gyeongsangbuk-do using a forest fire rating model and geographical information system (GIS). We investigated the appropriate positions of the automatic weather station (AWS) and a comprehensive network solution (a system including measurement, communication and data processing) for the establishment of an optimum mountain meteorological observation network system (MMONS). Also, we suggested a possible plan for combining the MMONS with unmanned monitoring camera systems and wireless relay towers operated by local governments and the Korea Forest Service for prevention of forest fire.