• Title/Summary/Keyword: wireless data communication

Search Result 2,624, Processing Time 0.03 seconds

Implementation of Acceleration Sensor-based Human activity and Fall Classification Algorithm (가속도 센서기반의 인체활동 및 낙상 분류를 위한 알고리즘 구현)

  • Hyun Park;Jun-Mo Park;Yeon-Chul, Ha
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.2
    • /
    • pp.76-83
    • /
    • 2022
  • With the recent development of IT technology, research and interest in various biosignal measuring devices is increasing. As an aging society is in full swing, research on the elderly population using IT-related technologies is continuously developing. This study is about the development of life pattern detection and fall detection algorithm, which is one of the medical service areas for the elderly, who are rapidly developing as they enter a super-aged society. This study consisted of a system using a 3-axis accelerometer and an electrocardiogram sensor, collected data, and then analyzed the data. It was confirmed that behavioral patterns could be classified from the actual research results. In order to evaluate the usefulness of the human activity monitoring system implemented in this study, experiments were performed under various conditions, such as changes in posture and walking speed, and signal magnitude range and signal vector magnitude parameters reflecting the acceleration of gravity of the human body and the degree of human activity. was extracted. And the possibility of discrimination according to the condition of the subject was examined by these parameter values.

Computer vision-based remote displacement monitoring system for in-situ bridge bearings robust to large displacement induced by temperature change

  • Kim, Byunghyun;Lee, Junhwa;Sim, Sung-Han;Cho, Soojin;Park, Byung Ho
    • Smart Structures and Systems
    • /
    • v.30 no.5
    • /
    • pp.521-535
    • /
    • 2022
  • Efficient management of deteriorating civil infrastructure is one of the most important research topics in many developed countries. In particular, the remote displacement measurement of bridges using linear variable differential transformers, global positioning systems, laser Doppler vibrometers, and computer vision technologies has been attempted extensively. This paper proposes a remote displacement measurement system using closed-circuit televisions (CCTVs) and a computer-vision-based method for in-situ bridge bearings having relatively large displacement due to temperature change in long term. The hardware of the system is composed of a reference target for displacement measurement, a CCTV to capture target images, a gateway to transmit images via a mobile network, and a central server to store and process transmitted images. The usage of CCTV capable of night vision capture and wireless data communication enable long-term 24-hour monitoring on wide range of bridge area. The computer vision algorithm to estimate displacement from the images involves image preprocessing for enhancing the circular features of the target, circular Hough transformation for detecting circles on the target in the whole field-of-view (FOV), and homography transformation for converting the movement of the target in the images into an actual expansion displacement. The simple target design and robust circle detection algorithm help to measure displacement using target images where the targets are far apart from each other. The proposed system is installed at the Tancheon Overpass located in Seoul, and field experiments are performed to evaluate the accuracy of circle detection and displacement measurements. The circle detection accuracy is evaluated using 28,542 images captured from 71 CCTVs installed at the testbed, and only 48 images (0.168%) fail to detect the circles on the target because of subpar imaging conditions. The accuracy of displacement measurement is evaluated using images captured for 17 days from three CCTVs; the average and root-mean-square errors are 0.10 and 0.131 mm, respectively, compared with a similar displacement measurement. The long-term operation of the system, as evaluated using 8-month data, shows high accuracy and stability of the proposed system.

Enhancing Small-Scale Construction Sites Safety through a Risk-Based Safety Perception Model (소규모 건설현장의 위험성평가를 통한 안전인지 모델 연구)

  • Kim, Han-Eol;Lim, Hyoung-Chul
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.1
    • /
    • pp.97-108
    • /
    • 2024
  • This research delves into the escalating concerns of accidents and fatalities in the construction industry over the recent five-year period, focusing on the development of a Safety Perception Model to augment safety measures. Given the rising percentage of elderly workers and the concurrent drop in productivity within the sector, there is a pronounced need for leveraging Fourth Industrial Revolution technologies to bolster safety protocols. The study comprises an in-depth analysis of statistical data regarding construction-related fatalities, aiming to shed light on prevailing safety challenges. Central to this investigation is the formulation of a Safety Perception Model tailored for small-scale construction projects. This model facilitates the quantification of safety risks by evaluating safety grades across construction sites. Utilizing the DWM1000 module, among an array of wireless communication technologies, the model enables the real-time tracking of worker locations and the assessment of safety levels on-site. Furthermore, the deployment of a safety management system allows for the evaluation of risk levels associated with individual workers. Aggregating these data points, the Safety Climate Index(SCLI) is calculated to depict the daily, weekly, and monthly safety climate of the site, thereby offering insights into the effectiveness of implemented safety measures and identifying areas for continuous improvement. This study is anticipated to significantly contribute to the systematic enhancement of safety and the prevention of accidents on construction sites, fostering an environment of improved productivity and strengthened safety culture through the application of the Safety Perception Model.

Development of an Eye Patch-Type Biosignal Measuring Device to Measure Sleep Quality (수면의 질을 측정하기 위한 안대형 생체신호 측정기기 개발)

  • Changsun Ahn;Jaekwan Lim;Bongsu Jung;Youngjoo Kim
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.5
    • /
    • pp.171-180
    • /
    • 2023
  • The three major sleep disorders in Korea are snoring, sleep apnea, and insomnia. Lack of sleep is the root of all diseases. Some of the most serious potential problems associated with sleep deprivation are cardiovascular problems, cognitive impairment, obesity, diabetes, colitis, prostate cancer, etc. To solve these problems, the Korean government provided low-cost national health insurance benefits for polysomnography tests in July 2018. However, insomnia patients still have problems getting treated in terms of time, space, and economic perspectives. Therefore, it would be better for insomnia patients to be allowed to test at home. The measuring device can measure six biosignals (eye movement, tossing and turning, body temperature, oxygen saturation, heart rate, and audio). A gyroscope sensor (MPU9250, InvenSense, USA) was used for eye movement, tossing, and turning. The input range of the sensor was in 258°/sec to 460°/sec, and the data range was in the input range. Body temperature, oxygen saturation range, and heart rate were measured by a sensor (MAX30102, Analog Devices, USA). The body temperature was measured in 30 ℃ to 45 ℃, and the oxygen saturation range was 0% for the unused state and 20 % to 90 % for the used state. The heart rate measurement range was in 40 bpm to 180 bpm. The measurement of audio signal was performed by an audio sensor (AMM2742-T-R, PUIaudio, USA). The was -42 dB ±1 dB frequency range was 20 Hz to 20 kHz. The measured data was successfully received in wireless network conditions. The system configuration was consisted of a PC and a mobile app for bio-signal measurement and data collection. The measured data was collected by mobile phones and desktops. The data collected can be used as preliminary data to determine the stage of sleep and perform the screening function for sleep induction and sleep disturbances. In the future, this convenient sleep measurement device could be beneficial for treating insomnia.

An Efficient Core-Based Multicast Tree using Weighted Clustering in Ad-hoc Networks (애드혹 네트워크에서 가중치 클러스터링을 이용한 효율적인 코어-기반 멀티캐스트 트리)

  • Park, Yang-Jae;Han, Seung-Jin;Lee, Jung-Hyun
    • The KIPS Transactions:PartC
    • /
    • v.10C no.3
    • /
    • pp.377-386
    • /
    • 2003
  • This study suggested a technique to maintain an efficient core-based multicast tree using weighted clustering factors in mobile Ad-hoc networks. The biggest problem with the core-based multicast tree routing is to decide the position of core node. The distance of data transmission varies depending on the position of core node. The overhead's effect on the entire network is great according to the recomposition of the multicast tree due to the movement of core node, clustering is used. A core node from cluster head nodes on the multicast tree within core area whose weighted factor is the least is chosen as the head core node. Way that compose multicast tree by weighted clustering factors thus and propose keeping could know that transmission distance and control overhead according to position andmobility of core node improve than existent multicast way, and when select core node, mobility is less, and is near in center of network multicast tree could verification by simulation stabilizing that transmission distance is short.

Ontology-based Context-aware Framework for Battlefield Surveillance Sensor Network System (전장감시 센서네트워크시스템을 위한 온톨로지 기반 상황인식 프레임워크)

  • Shon, Ho-Sun;Park, Seong-Seung;Jeon, Seo-In;Ryu, Keun-Ho
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.4
    • /
    • pp.9-20
    • /
    • 2011
  • Future warfare paradigm is changing to network-centric warfare and effects-based operations. In order to find first and strike the enemy in the battlefield, friendly unit requires real-time target acquisition, intelligence collection, accurate situation assessment, and timely decision. The rapid development in advanced sensor technology and wireless networks requires a significant change in operational concepts of the battlefield surveillance. In particular, the introduction of a battlefield surveillance sensor network system is a big challenge to the ground forces which have lack of automated information collection assets. Therefore this paper proposes an ontology-based context-aware framework for the battlefield surveillance sensor network system which is needed for early finding the enemy and visualizing the battlefield in the ground force operations. Compared with the performance of existing systems, the one of the proposed framework has shown highly positive results by applying the context systems evaluation method. The framework has also proven to be satisfactory by the structured evaluation method using device collaboration. Since the proposed ontology-based context-aware framework has a lot of advantages in terms of scalability and reusability, the ground force's reconnaissance and surveillance system can be widely applied to expand in the future. And, ontology-based model has some weak points such as ontology data size, processing time, and limitation of network bandwidth. However, these problems can be resolved by customizing properly to fit the mission and characteristics of the unit. Moreover, development of the next-generation communication infrastructure can expedite the intelligent surveillance and reconnaissance service and may be expected to contribute greatly to expanding the information capacity.

Design and Implementation of Query Processor for Moving Objects (이동객체를 위한 질의처리 컴포넌트의 설계 및 구현)

  • Kim, Kyoung-Sook;Kwon, O-Je;Byun, Hee-Young;Jo, Dae-Soo;Kim, Tae-Wan;Li, Ki-Joune
    • Journal of Korea Spatial Information System Society
    • /
    • v.6 no.1 s.11
    • /
    • pp.31-50
    • /
    • 2004
  • With the growth of wireless communication networks and mobile devices taking in GPS, Location-Based Service(LBS) is becoming an integral part of mobile applications. LBS can deal with location-aware features such as persons holding mobile phones or vehicles equipped with GPS, and provide the users with the location information of the features. Thus it is necessary to develop moving object database systems to store, manage, and query moving objects which change their locations continuously as time passes. In this paper, we design and implement a query processing component which deals with moving objects as a key data type. For this component, we define a new SQL-like query language(called MOQL) and as a consequence, design and implement modules that analyze and execute queries. It supports various types of operators that process range queries, infer topological relations, compute trajectories, and find k-nearest neighbors. It can be used as a subsystem if other application systems which deal moving objects and also supports ADO.NET interface that can be used to interact end-users.

  • PDF

Analysis of the Bogus Routing Information Attacks in Sensor Networks (센서 네트워크에서 AODV 라우팅 정보 변조공격에 대한 분석)

  • Lee, Myung-Jin;Kim, Mi-Hui;Chae, Ki-Joon;Kim, Ho-Won
    • The KIPS Transactions:PartC
    • /
    • v.14C no.3 s.113
    • /
    • pp.229-238
    • /
    • 2007
  • Sensor networks consist of many tiny sensor nodes that collaborate among themselves to collect, process, analyze, and disseminate data. In sensor networks, sensor nodes are typically powered by batteries, and have limited computing resources. Moreover, the redeployment of nodes by energy exhaustion or their movement makes network topology change dynamically. These features incur problems that do not appear in traditional, wired networks. Security in sensor networks is challenging problem due to the nature of wireless communication and the lack of resources. Several efforts are underway to provide security services in sensor networks, but most of them are preventive approaches based on cryptography. However, sensor nodes are extremely vulnerable to capture or key compromise. To ensure the security of the network, it is critical to develop suity mechanisms that can survive malicious attacks from "insiders" who have access to the keying materials or the full control of some nodes. In order to protect against insider attacks, it is necessary to understand how an insider can attack a sensor network. Several attacks have been discussed in the literature. However, insider attacks in general have not been thoroughly studied and verified. In this paper, we study the insider attacks against routing protocols in sensor networks using the Ad-hoc On-Demand Distance Vector (AODV) protocol. We identify the goals of attack, and then study how to achieve these goals by modifying of the routing messages. Finally, with the simulation we study how an attacker affects the sensor networks. After we understand the features of inside attacker, we propose a detect mechanism using hop count information.

Technical Issues and Solutions for Developing IoT Applications (IoT 애플리케이션 개발의 기술적 이슈 및 솔루션)

  • Shin, Dong Ha;Han, Seung Ho;La, Hyun Jung;Kim, Soo Dong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.3
    • /
    • pp.99-110
    • /
    • 2015
  • Internet-of-Things(IoT) is the computing paradigm converged with different technologies, where diverse devices are connected via the wireless network, acquire environmental information from their equipped sensors, and actuated. IoT applications typically provide smart services to users by interacting with multiple devices connected to the network and are designed by integrating multiple technologies such as sensor network, communication technologies, and software engineering. Moreover, since the concept of IoT has been introduced recently, most of the researches are in the beginning step, which is too early to be practically applied. Due to these facts, developing IoT application results in unconventional technical challenges which have not been observed in typical software applications. And, it is not straightforward to apply conventional project guidelines to IoT application development projects. Hence, there can be many difficulties to successfully complete the projects. Therefore, for successful completion of the projects, we analyze technical challenges occurring in all phases of the project lifecycle, i.e. project preparation stage and development stage. And, we propose the effective solutions to overcome the issues. To verify identified issues and presented solutions, we present the result of applying the solutions to an IoT application development. Through the case study, we evaluate how reasonable the unconventional technical issues are generated and analyze effectiveness of applying the solutions to the application.

Development of a Real-Time Position Tracking System for a Manufacturing Process Based on a UWB Sensor Using a Kalman Filter (칼만필터를 적용한 UWB 센서기반 제조업 조립공정작업의 실시간 위치추적 시스템 개발)

  • Jeong, Seung-Hyun;Choi, Deuk-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.627-633
    • /
    • 2020
  • Assembly process data can be gathered in real time in a manufacturing execution system (MES) server using proximity sensors, barcodes, RFID, ZigBee, Bluetooth, wireless sensor networks, etc. Although this is suitable for identifying process flow and checking production progress, it is difficult to trace the location of individual workers in real time for missing work or trajectories within the work area. To overcome this, the location and trajectory of the working tool can be analyzed in real time through a position tracking system of an operator's working tool. It can instruct the operator to perform a consistent working process. Productivity and quality improvement can be achieved by an alarming or blocking operator with possible assembly defects during the assembly process in real time. To this end, we developed a real-time tool position-tracking sensor system based on Ultra Wide Band (UWB) trilateration using a Kalman filter to eliminate mechanical vibration and radio communication noise.