• Title/Summary/Keyword: wireless data

Search Result 5,119, Processing Time 0.03 seconds

Analysis of Optimized Aggregation Timing in Wireless Sensor Networks

  • Lee, Dong-Wook;Kim, Jai-Hoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.2
    • /
    • pp.209-218
    • /
    • 2009
  • In a wireless sensor network(WSN) each sensor node deals with numerous sensing data elements. For the sake of energy efficiency and network lifetime, sensing data must be handled effectively. A technique used for this is data aggregation. Sending/receiving data involves numerous steps such as MAC layer control packet handshakes and route path setup, and these steps consume energy. Because these steps are involved in all data communication, the total cost increases are related to the counts of data sent/received. Therefore, many studies have proposed sending combined data, which is known as data aggregation. Very effective methods to aggregate sensing data have been suggested, but there is no means of deciding how long the sensor node should wait for aggregation. This is a very important issue, because the wait time affects the total communication cost and data reliability. There are two types of data aggregation; the data counting method and the time waiting method. However, each has weaknesses in terms of the delay. A hybrid method can be adopted to alleviate these problems. But, it cannot provide an optimal point of aggregation. In this paper, we suggest a stochastic-based data aggregation scheme, which provides the cost(in terms of communication and delay) optimal aggregation point. We present numerical analysis and results.

Damage index sensor for smart structures

  • Mita, Akira;Takahira, Shinpei
    • Structural Engineering and Mechanics
    • /
    • v.17 no.3_4
    • /
    • pp.331-346
    • /
    • 2004
  • A new sensor system is proposed for measuring damage indexes. The damage index is a physical value that is well correlated to a critical damage in a device or a structure. The mechanism proposed here utilizes elastic buckling of a thin wire and does not require any external power supply for memorizing the index. The mechanisms to detect peak strain, peak displacement, peak acceleration and cumulative deformation as examples of damage indexes are presented. Furthermore, passive and active wireless data retrieval mechanisms using electromagnetic induction are proposed. The passive wireless system is achieved by forming a closed LC circuit to oscillate at its natural frequency. The active wireless sensor can transmit the data much further than the passive system at the sacrifice of slightly complicated electric circuit for the sensor. For wireless data retrieval, no wire is needed for the sensor to supply electrical power. For the active system, electrical power is supplied to the sensor by radio waves emitted from the retrieval system. Thus, external power supply is only needed for the retrieval system when the retrieval becomes necessary. Theoretical and experimental studies to show excellent performance of the proposed sensor are presented. Finally, a prototype damage index sensor installed into a 7 storey base-isolated building is explained.

New Key Control Metod for Wireless Lan Security (무선랜 보안을 위한 새로운 키 관리 방식)

  • Lee, Hang-Seok;Lee, Ki-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.708-711
    • /
    • 2008
  • Wireless Lan is rapidly increased, but now most of wireless lan are being used to cover physical boundary of wired tan. If Users who communicate each other send cipher data, other users can not change or interrupt and the data is guaranteed for integrity. Otherwise, if user lose key for any reason, the data is not guaranteed for integrity. So it is important to control and manage to offer key. This Thesis examine problems of using existing wireless lan. Moreover, for users using small wireless lan, this offers installing server for controling and sharing and improves security problems.

  • PDF

An Optimal Schedule Algorithm Trade-Off Among Lifetime, Sink Aggregated Information and Sample Cycle for Wireless Sensor Networks

  • Zhang, Jinhuan;Long, Jun;Liu, Anfeng;Zhao, Guihu
    • Journal of Communications and Networks
    • /
    • v.18 no.2
    • /
    • pp.227-237
    • /
    • 2016
  • Data collection is a key function for wireless sensor networks. There has been numerous data collection scheduling algorithms, but they fail to consider the deep and complex relationship among network lifetime, sink aggregated information and sample cycle for wireless sensor networks. This paper gives the upper bound on the sample period under the given network topology. An optimal schedule algorithm focusing on aggregated information named OSFAI is proposed. In the schedule algorithm, the nodes in hotspots would hold on transmission and accumulate their data before sending them to sink at once. This could realize the dual goals of improving the network lifetime and increasing the amount of information aggregated to sink. We formulate the optimization problem as to achieve trade-off among sample cycle, sink aggregated information and network lifetime by controlling the sample cycle. The results of simulation on the random generated wireless sensor networks show that when choosing the optimized sample cycle, the sink aggregated information quantity can be increased by 30.5%, and the network lifetime can be increased by 27.78%.

An Wireless Mobile-Fixed Station System for Remote High Quality Multimedia Emergency System (원격 응급 진료 시스템을 위한 무선 환경에서의 고정 연결 이동-고정시스템 구현)

  • 박정훈;박진배;유선국;윤태성
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.8
    • /
    • pp.443-451
    • /
    • 2003
  • Many attempts have been made for the health and lives of patients at a remote site. but little attention has been given to emergency system using wireless or other intelligent networks. In this paper, shown is a remote emergency system which can be used in an ambulance. It possibly gives a great help to the patients who may lose their lives, in other words, gives pre-hospital cure to them being sent to the hospital. Doctors or specialists are able to give a quick help which may give a new life to patients. This system deal with very important patient's data-ECG, SpO$_2$, blood pressure, biomedical signal data etc. - as other emergency system. A good performance better than other system is many but shortly spoken as follows. First, this system is user friendly system activated in windows 2000 environment. Second, MPEG4 and ECG data sent to the other station for specilists can give a pre-hospital cure to patients in advance. Third, there exist effective algorithms to operate this system. Fourth, this system has been made with software mostly, so this system can be easily embedded in IBM compatible computer. In addition to this performance, for the better and reliable system, various tests were proceeded and recursively tested. Tests were made in EV-DO wireless network and Local Area Network. This mobile-fixed remote emergency system using wireless network like EV-DO network will give a great usage to needed area.

Wireless safety monitoring of a water pipeline construction site using LoRa communication

  • Lee, Sahyeon;Gil, Sang-Kyun;Cho, Soojin;Shin, Sung Woo;Sim, Sung-Han
    • Smart Structures and Systems
    • /
    • v.30 no.5
    • /
    • pp.433-446
    • /
    • 2022
  • Despite efforts to reduce unexpected accidents at confined construction sites, choking accidents continue to occur. Because of the poorly ventilated atmosphere, particularly in long, confined underground spaces, workers are subject to dangerous working conditions despite the use of artificial ventilation. Moreover, the traditional monitoring methods of using portable gas detectors place safety inspectors in direct contact with hazardous conditions. In this study, a long-range (LoRa)-based wireless safety monitoring system that features the network organization, fault-tolerant, power management, and a graphical user interface (GUI) was developed for underground construction sites. The LoRa wireless data communication system was adopted to detect hazardous gases and oxygen deficiency within a confined underground space with adjustable communication range and low power consumption. Fault tolerance based on the mapping information of the entire wireless sensor network was particularly implemented to ensure the reliable operation of the monitoring system. Moreover, a sleep mode was implemented for the efficient power management. The GUI was also developed to control the entire safety-monitoring system and to manage the measured data. The developed safety-monitoring system was validated in an indoor testing and at two full-scale water pipeline construction sites.

The Implementation of UWB and 60GHz Band Wireless Communication Technology for Wireless Home Network and Their Market Prospect (무선 홈네트워크 구현을 위한 UWB와 60GHz 대역 무선 통신 기술의 활용방안과 시장전망)

  • Hong, Seok-Soo;Park, Jong-Hun;Lee, Dong-Joo;Lee, Jae-Sup;Hong, Jung-Wan;Lie, Chang-Hoon
    • The Journal of Society for e-Business Studies
    • /
    • v.13 no.2
    • /
    • pp.195-212
    • /
    • 2008
  • The demand of wireless communication system is increasing due to the development of computers and other digital media appliances. In particular, new wireless communication technology is necessary for implementation of home network since a lot of data transmission is occurred. Recently, two wireless communication technologies, Ultra Wide Band(UWB) and 60GHz band wireless communication technology, have being developed for high-speed data transmission and Wireless Personal Area Network(WPAN). In this paper, we study the present development condition of these two technologies and a role of them in home network. We also suggest the method to implement the home network using all wireless communication technologies. At the end, we outlook the market of WPAN and High Definition Multimedia Interface(HDMI).

  • PDF

Ultrasonic wireless sensor development for online fatigue crack detection and failure warning

  • Yang, Suyoung;Jung, Jinhwan;Liu, Peipei;Lim, Hyung Jin;Yi, Yung;Sohn, Hoon;Bae, In-hwan
    • Structural Engineering and Mechanics
    • /
    • v.69 no.4
    • /
    • pp.407-416
    • /
    • 2019
  • This paper develops a wireless sensor for online fatigue crack detection and failure warning based on crack-induced nonlinear ultrasonic modulation. The wireless sensor consists of packaged piezoelectric (PZT) module, an excitation/sensing module, a data acquisition/processing module, a wireless communication module, and a power supply module. The packaged PZT and the excitation/sensing module generate ultrasonic waves on a structure and capture the response. Based on nonlinear ultrasonic modulation created by a crack, the data acquisition/processing module periodically performs fatigue crack diagnosis and provides failure warning if a component failure is imminent. The outcomes are transmitted to a base through the wireless communication module where two-levels duty cycling media access control (MAC) is implemented. The uniqueness of the paper lies in that 1) the proposed wireless sensor is developed specifically for online fatigue crack detection and failure warning, 2) failure warning as well as crack diagnosis are provided based on crack-induced nonlinear ultrasonic modulation, 3) event-driven operation of the sensor, considering rare extreme events such as earthquakes, is made possible with a power minimization strategy, and 4) the applicability of the wireless sensor to steel welded members is examined through field and laboratory tests. A fatigue crack on a steel welded specimen was successfully detected when the overall width of the crack was around $30{\mu}m$, and a failure warnings were provided when about 97.6% of the remaining useful fatigue lives were reached. Four wireless sensors were deployed on Yeongjong Grand Bridge in Souht Korea. The wireless sensor consumed 282.95 J for 3 weeks, and the processed results on the sensor were transmitted up to 20 m with over 90% success rate.

Fundamental Research of Strain-based Wireless Sensor Network for Structural Health Monitoring of Highrise building (초고층 건물의 건전성 감시를 위한 변형률 기반 무선 센서 네트워크 기법의 기초적 연구)

  • Jung, Eun-Su;Park, Hyo-Seon;Choi, Suk-Won;Cha, Ho-Jung
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.429-432
    • /
    • 2007
  • For smart structure technologies, the interests in wireless sensor networks for structural health monitoring are growing. The wireless sensor networks reduce the installation of the wire embedded in the whole structure and save the costs. But the wireless sensor networks have lots of limits and there are lots of researches and developments of wireless sensor and the network for data process. Most of the researches of wireless sensor network is applying to the civil engineering structure and the researches for the highrise building are required. And strain-based SHM gives the local damage information of the structures which acceleration-based SHM can not. In this paper, concept of wireless sensor network for structural health monitoring of highrise building is suggested. And verifying the feasibility of the strain-based SHM a strain sensor board has developed and tested by experiments.

  • PDF

A Construction of An Intelligent Industry Network through Wireless Sensor Network

  • Yun, Yeo-hong;Hwang, Kwang-il;Han, Woo-young;Eom, Doo-seop
    • Proceedings of the IEEK Conference
    • /
    • 2003.07a
    • /
    • pp.465-468
    • /
    • 2003
  • In industry areas, a lot of factories and process plants need network for processing data acquired from field and for communicating between sensors or actuators or field controllers. Most of the industry networks are based on wired solutions. But, recently, a lot of factories and process plants are moving into wireless solutions since they have some advantages compared with wired one. In this paper we first review the characteristics of wired and wireless network technologies and introduce the new technique called wireless sensor network (WSN). And then we describe the wireless sensor node system designed by us for WSN which has the ability of small size, flexibility and low-power consumption and embedded into the Bar-code scanner to communicate each other. Finally, we conclude this paper by showing that wireless industry network can be constructed with wireless sensor network without large change of traditional wired topologies through experiment using wireless sensor nodes.

  • PDF