• Title/Summary/Keyword: wireless data

Search Result 5,114, Processing Time 0.027 seconds

A Reliable Transmission and Buffer Management Techniques of Event-driven Data in Wireless Sensor Networks (센서 네트워크에서 Event-driven 데이터의 신뢰성 있는 전송 및 버퍼 관리 기법)

  • Kim, Dae-Young;Cho, Jin-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.6B
    • /
    • pp.867-874
    • /
    • 2010
  • Since high packet losses occur in multi-hop transmission of wireless sensor networks, reliable data transmission is required. Especially, in case of event-driven data, a loss recovery mechanism should be provided for lost packets. Because retransmission for lost packets is requested to a node that caches the packets, the caching node should maintains all of data for transmission in its buffer. However, nodes of wireless sensor networks have limited resources. Thus, both a loss recovery mechanism and a buffer management technique are provided for reliable data transmission in wireless sensor networks. In this paper, we propose a buffer management technique at a caching position determined by a loss recovery mechanism. The caching position of data is determined according to desirable reliability for the data. In addition, we validate the performance of the proposed method through computer simulations.

An Energy-Efficient Data-Centric Routing Algorithm for Wireless Sensor Networks (무선 센서 네트워크에서 에너지 효율적인 데이터 중심 라우팅 알고리즘)

  • Choi, Hyun-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.11
    • /
    • pp.2187-2192
    • /
    • 2016
  • A data-centric routing protocol considering a data aggregation technique at relay nodes is required to increase the lifetime of wireless sensor networks. An energy-efficient data-centric routing algorithm is proposed by considering a tradeoff between acquisition time and energy consumption in the wireless sensor network. First, the proposed routing scheme decides the sink node among all sensor nodes in order to minimize the maximum distance between them. Then, the proposed routing extends its tree structure in a way to minimize the link cost between the connected nodes for reducing energy consumption while minimizing the maximum distance between sensor nodes and a sink node for rapid information gathering. Simulation results show that the proposed data-centric routing algorithm has short information acquisition time and low energy consumption; thus, it achieves high energy efficiency in the wireless sensor network compared to conventional routing algorithms.

Routing Protocol based on Data Aggregation with Energy Efficiency in Underwater Wireless Sensor Networks (수중 무선 센서 네트워크에서 에너지를 고려한 데이터 병합 기반 라우팅 프로토콜)

  • Heo, Junyoung;Min, Hong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.1
    • /
    • pp.109-114
    • /
    • 2013
  • In underwater wireless sensor networks, sensing data such temperature and salinity can be merged by averaging them. Data aggregation is a good choice to reduce the amount of packets and save energy in underwater wireless sensor networks. However, data aggregation could bring about packet delay and non-directional transmission to the sink. In this paper, we propose a new path building algorithm based on data aggregation to mitigate these problems. The paper reduces the delay without wireless interferences and maximizes the energy efficiency by removing the non-directional transmission to the sink. Experimental results show that the proposed algorithm outperforms in terms of the energy efficiency and the packet delay.

Wireless Measurement Technology for Power Plant Performance Diagnosis (발전설비의 성능진단 적용 무선계측 기술)

  • Kim, Ui-Hwan;Lee, Eung-Gon;Hong, Eun-Gi
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.3 no.1
    • /
    • pp.9-16
    • /
    • 2017
  • The performance test is conducted for the purpose of determining the accurate thermal performance of the power generation facility or deriving the factors of thermal efficiency degradation. Compared to the acquisition method of power plant thermal performance test data by compensating cable or transmission cable, performance test using wireless instrument can acquire digital data in order to shorten the period due to installation and demolition of instrument and enhance safety of workers and relatively accurate data can be acquired thereby improving work efficiency. Wireless instruments have already been introduced to the market a long time ago, and some of them are used in industry such as petrochemical industry. However, there is no example which has been conducted for performance test of power generation facilities. In order to apply power generation facilities, a reliable system capable of acquiring performance data smoothly without affecting the control system is required. The wireless measurement system can eliminate the measurement defects and errors such as the damage due to the movement of the connecting cable, the extension due to the extension of the shield wire, the contact failure at the contact point between the measuring sensor and the connecting wire, This method has the advantage of collecting relatively accurate performance test data.

WIRELESS SENSOR NETWORK BASED BRIDGE MANAGEMENT SYSTEM FOR INFRASTRUCTURE ASSET MANAGEMENT

  • Jung-Yeol Kim;Myung-Jin Chae;Giu Lee;Jae-Woo Park;Moon-Young Cho
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1324-1327
    • /
    • 2009
  • Social infrastructure is the basis of public welfare and should be recognized and managed as important assets. Bridge is one of the most important infrastructures to be managed systematically because the impact of the failure is critical. It is essential to monitor the performance of bridges in order to manage them as an asset. But current analytical methods such as predictive modeling and structural analysis are very complicated and difficult to use in practice. To apply these methods, structural and material condition data collection should be performed in each element of bridge. But it is difficult to collect these detailed data in large numbers and various kinds of bridges. Therefore, it is necessary to collect data of major measurement items and predict the life of bridges roughly with advanced information technologies. When certain measurement items reach predefined limits in the monitoring bridges, precise performance measurement will be done by detailed site measurement. This paper describes the selection of major measurement items that can represent the tendency of bridge life and introduces automated bridge data collection test-bed using wireless sensor network technology. The following will be major parts of this paper: 1) Examining the features of conventional bridge management system and data collection method 2) Mileage concept as a bridge life indicator and measuring method of the indicator 3) Test-bed of automated and real-time based bridge life indicator monitoring system using wireless sensor network

  • PDF

1-hop Data Traffic Reduction Method in Tactical Wireless Mobile Ad-Hoc Network based on MIL-STD-188-220C (MIL-STD-188-220C 기반 전술 무선 이동 Ad-Hoc 망에서 1-hop내 데이터 트래픽 감소 방법)

  • You, Ji-Sang
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.15-24
    • /
    • 2008
  • The data delivery confirmation method of MIL-STD-188-220C, which is a tactical wireless mobile Ad-Hoc communication protocol, is that a source node requires the end-to-end ack from all destination nodes and the data-link ack from 1-hop neighboring destination nodes and relaying nodes, regardless of the hop distance from a source node to destination nodes. This method has the problem to degrade the whole communication network performance because of excessive data traffic due to the duplicate use of end-to-end ack and data-link ack, and the collision among end-to-end acks on the wireless network in the case of confirming a data delivery within an 1-hop distance. In order to solve this problem, this paper has proposed the method to perform the data delivery confirmation with the improvement of communication network performance through the data traffic reduction by achieving the reliable data delivery confirmation requiring the only data-link ack within an 1-hop distance. The effects of the proposed method are analyzed in the two aspects of the data delivery confirmation delay time and the data delivery confirmation success ratio.

A Data Gathering Approach for Wireless Sensor Network with Quadrotor-based Mobile Sink Node

  • Chen, Jianxin;Chen, Yuanyuan;Zhou, Liang;Du, Yuelin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.10
    • /
    • pp.2529-2547
    • /
    • 2012
  • In this paper, we use a quadrotor-based mobile sink to gather sensor data from the terrestrial deployed wireless sensor network. By analyzing the flight features of the mobile sink node, we theoretically study the flight constraints of height, velocity, and trajectory of the mobile sink node so as to communicate with the terrestrial wireless sensor network. Moreover, we analyze the data amount which the mobile sink can send when it satisfies these flight constraints. Based on these analysis results, we propose a data acquisition approach for the mobile sink node, which is discussed detailed in terms of network performance such as the transmission delay, packet loss rate, sojourning time and mobile trajectory when given the flying speed and height of the mobile sink node. Extensive simulation results validate the efficiency of the proposed scheme.

Recovering missing data transmitted from a wireless sensor node for vibration-based bridge health monitoring

  • Kim, C.W.;Kawatani, M.;Ozaki, R.;Makihata, N.
    • Structural Engineering and Mechanics
    • /
    • v.38 no.4
    • /
    • pp.417-428
    • /
    • 2011
  • This paper presents recovering of missing vibration data of a bridge transmitted from wireless sensors. Kalman filter algorithm is adopted to reconstruct the missing data analytically. Validity of the analytical approach is examined through a field experiment of a bridge. Observations demonstrate that, even a part of recovered acceleration responses is underestimated in comparison with those responses taken from cabled sensors, dominant frequencies taken from the reconstructed data are comparable with those from cabled sensors.

A Study on the method to collect Vehicle-Data using Wireless LAN (전동차운행정보수집을 위한 무선랜 활용방안 연구)

  • Ahn Tae-Ki;Lee Ho-Yong;Park Ki-Jun;Kim Gil-Dong
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1459-1461
    • /
    • 2004
  • EMU, Electrical Multiple Unit, stores various information in the computer system installed on the vehicle when train is running. The stored information has to be moved into a computer installed on the ground. The information is used to all kinds of planning concerned EMU, and taken advantage of maintenance with information importantly. IC memory card is used to move the information from vehicle to the ground at present. But this method has many weaknesses from hours and manpower aspect because it spends much time shifting data. So this paper proposes a method to move data as quickly and correctly as possible. We propose the method to collect the information using wireless LAN automatically in this paper. And we carried out data-transfer-test on the real field using wireless LAN to confirm possibility of this method. This paper shows the result of the data-transfer-test.

  • PDF

Design of Coordinator Based on Android for Data Collection in Body Sensor Network

  • Min, Seongwon;Lee, Jong-Yong;Jung, Kye-Dong
    • International Journal of Advanced Culture Technology
    • /
    • v.5 no.2
    • /
    • pp.98-105
    • /
    • 2017
  • Smartphones are fast growing in the IT market and are the most influential devices in our daily life. Smartphones are being studied for their use in body sensor networks with excellent processing power and wireless communication technology. In this paper, we propose a coordinator design that provides data collection, classification, and display using based on Android-smartphone in multiple sensor nodes. The coordinator collects data of sensor nodes that measure biological patterns using wireless communication technologies such as Bluetooth and NFC. The coordinator constructs a network using a multiple-level scheduling algorithm for efficient data collection at multiple sensor nodes. Also, to support different protocols between heterogeneous sensors, a data sheet recording wireless communication protocol information is used. The designed coordinator used Arduino to test the performance of multiple sensor node environments.