• Title/Summary/Keyword: wireless control network

Search Result 1,580, Processing Time 0.028 seconds

Data Congestion Control Using Drones in Clustered Heterogeneous Wireless Sensor Network (클러스터된 이기종 무선 센서 네트워크에서의 드론을 이용한 데이터 혼잡 제어)

  • Kim, Tae-Rim;Song, Jong-Gyu;Im, Hyun-Jae;Kim, Bum-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.12-19
    • /
    • 2020
  • The clustered heterogeneous wireless sensor network is comprised of sensor nodes and cluster heads, which are hierarchically organized for different objectives. In the network, we should especially take care of managing node resources to enhance network performance based on memory and battery capacity constraints. For instances, if some interesting events occur frequently in the vicinity of particular sensor nodes, those nodes might receive massive amounts of data. Data congestion can happen due to a memory bottleneck or link disconnection at cluster heads because the remaining memory space is filled with those data. In this paper, we utilize drones as mobile sinks to resolve data congestion and model the network, sensor nodes, and cluster heads. We also design a cost function and a congestion indicator to calculate the degree of congestion. Then we propose a data congestion map index and a data congestion mapping scheme to deploy drones at optimal points. Using control variable, we explore the relationship between the degree of congestion and the number of drones to be deployed, as well as the number of drones that must be below a certain degree of congestion and within communication range. Furthermore, we show that our algorithm outperforms previous work by a minimum of 20% in terms of memory overflow.

An ABR Rate Control Scheme Considering Wireless Channel Characteristics in the Wireless ATM Network (무선 ATM망에서 무선채널의 특성을 고려한 ABR 전송률 제어 방안)

  • Yi, Kyung-Joo;Min, Koo;Choi, Myung-Whan
    • Journal of KIISE:Information Networking
    • /
    • v.27 no.2
    • /
    • pp.206-218
    • /
    • 2000
  • Retransmissions on the DLC layer are essential to ABR service providing the low CLR (cell loss ratio) over the unreliable wireless channel with high bit error rate. In the wireless ATM, the DLC layer below ATM layer performs the retransmission and reordering of the cells to recover the cell loss over the wireless channel and by doing so, the effect of the wireless channel characteristics with high bit error rate can be minimized on the ATM layer which is designed under the assumption of the low bit error rate. We propose, in this paper, the schemes to reflect the changes of the transmission rate over the wireless channel on the ABR rate control. Proposed scheme can control the source rate to the changes of the transmission rate over the wireless channel and reduce the required buffer size in the AP (access point). In the simulation, we assume that the DLC layer can inform the ATM layer of the wireless channel quality as good or bad. Our simulation results show that the proposed schemes require the smaller buffer size compared with the existing scheme, enhanced dynamic max rate control algorithm (EDMRCA). It is also shown that the scheme with the intelligent DLC which adjusts the rate to the wireless channel quality not only provides the low CLR with smaller buffer requirement but also improves the throughput by utilizing the wireless bandwidth more efficiently.

  • PDF

The Development of New dynamic WRR Algorithm for Wireless Sensor Networks (무선 센서망을 위한 새로운 동적 가중치 할당 알고리즘 개발)

  • Cho, Hae-Seong;Cho, Ju-Phil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.5
    • /
    • pp.293-298
    • /
    • 2010
  • The key of USN(Ubiquitous Sensor Network) technology is low power wireless communication technology and proper resource allocation technology for efficient routing. The distinguished resource allocation method is needed for efficient routing in sensor network. To solve this problems, we propose an algorithm that can be adopted in USN with making up for weak points of PQ and WRR in this paper. The proposed algorithm produces the control discipline by the fuzzy theory to dynamically assign the weight of WRR scheduler with checking the Queue status of each class in sensor network. From simulation results, the proposed algorithm improves the packet loss rate of the EF class traffic to 6.5% by comparison with WRR scheduling method and that of the AF4 class traffic to 45% by comparison with PQ scheduling method.

Applying Deep Reinforcement Learning to Improve Throughput and Reduce Collision Rate in IEEE 802.11 Networks

  • Ke, Chih-Heng;Astuti, Lia
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.1
    • /
    • pp.334-349
    • /
    • 2022
  • The effectiveness of Wi-Fi networks is greatly influenced by the optimization of contention window (CW) parameters. Unfortunately, the conventional approach employed by IEEE 802.11 wireless networks is not scalable enough to sustain consistent performance for the increasing number of stations. Yet, it is still the default when accessing channels for single-users of 802.11 transmissions. Recently, there has been a spike in attempts to enhance network performance using a machine learning (ML) technique known as reinforcement learning (RL). Its advantage is interacting with the surrounding environment and making decisions based on its own experience. Deep RL (DRL) uses deep neural networks (DNN) to deal with more complex environments (such as continuous state spaces or actions spaces) and to get optimum rewards. As a result, we present a new approach of CW control mechanism, which is termed as contention window threshold (CWThreshold). It uses the DRL principle to define the threshold value and learn optimal settings under various network scenarios. We demonstrate our proposed method, known as a smart exponential-threshold-linear backoff algorithm with a deep Q-learning network (SETL-DQN). The simulation results show that our proposed SETL-DQN algorithm can effectively improve the throughput and reduce the collision rates.

Home Network System based on LabVIEW (LabVIEW 기반의 홈 네트워크 시스템)

  • Seo, Jung-Hee;Kim, Kil-Young;Park, Hung-Bog
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.823-826
    • /
    • 2008
  • This paper will show how to design home network management system in the wired/wireless environment using graphical language LabVIEW, J2ME and to apply the design to monitoring and remote controling for the information devices at home. This paper also provides with efficiency of device control and current status check according to the circumstances of administrators by constructing the wire/wirelessly integrated administration system. It means the administrators can access to central administration server and acquire the control right through web being able to operate the system with flexibility and can access to the server without computer whenever, wherever they need to control and administrate it through this wired/wireless unit easily.

  • PDF

Software Framework of Reconfigurable Data-oriented and Bi-directional Universal Remote Controller (동적 재구성이 가능한 데이터 지향적인 양방향 통합 리모컨의 소프트웨어 프레임워크)

  • Shin, Young-Sul;Lee, Woo-Jin
    • The KIPS Transactions:PartA
    • /
    • v.14A no.5
    • /
    • pp.287-294
    • /
    • 2007
  • Most of existing integrated remote controllers can control only a group of home appliances made by the same manufacturer. And they cannot monitor the status of home appliances since they are based on analog RF(Radio Frequency) signal and operate in a uni-directional manner In this paper, we propose a software framework for a hi-directional universal remote controller(URC) which monitors the status of home appliances in Wireless Personal Area Network(WPAN). The URC can handle the control and status messages which consist of a command with related arguments. When a user wants to control any home appliance, the URC can be dynamically configured to its dedicated remote controller by generating a GUI according to its profile. Any other devices which have a capacity for understanding the profile from the controlled devices can play the same role of the URC.

A Cyber-Physical Information System for Smart Buildings with Collaborative Information Fusion

  • Liu, Qing;Li, Lanlan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.5
    • /
    • pp.1516-1539
    • /
    • 2022
  • This article shows a set of physical information fusion IoT systems that we designed for smart buildings. Its essence is a computer system that combines physical quantities in buildings with quantitative analysis and control. In the part of the Internet of Things, its mechanism is controlled by a monitoring system based on sensor networks and computer-based algorithms. Based on the design idea of the agent, we have realized human-machine interaction (HMI) and machine-machine interaction (MMI). Among them, HMI is realized through human-machine interaction, while MMI is realized through embedded computing, sensors, controllers, and execution. Device and wireless communication network. This article mainly focuses on the function of wireless sensor networks and MMI in environmental monitoring. This function plays a fundamental role in building security, environmental control, HVAC, and other smart building control systems. The article not only discusses various network applications and their implementation based on agent design but also demonstrates our collaborative information fusion strategy. This strategy can provide a stable incentive method for the system through collaborative information fusion when the sensor system is unstable in the physical measurements, thereby preventing system jitter and unstable response caused by uncertain disturbances and environmental factors. This article also gives the results of the system test. The results show that through the CPS interaction of HMI and MMI, the intelligent building IoT system can achieve comprehensive monitoring, thereby providing support and expansion for advanced automation management.

Zigbee Adaptor for Two-way Data/Event/Service Interoperation in Internet of Things (사물인터넷의 양방향 데이터/이벤트/서비스 연동을 위한 지그비 어댑터)

  • Back, Moon-Ki;Yim, Hyung-Jun;Lee, Kyu-Chul
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.3 no.4
    • /
    • pp.107-114
    • /
    • 2014
  • Things in the IoT(Internet of Things) make various services by exchanging information over networks. The IoT includes many types of WSNs(Wireless Sensor Networks) that consists of spatially distributed wireless sensor nodes and operates with the various purposes with useful technologies such as identification, sensing and communication. Typically, Zigbee network composed of low-cost and lowpower devices is mainly used for wide-area monitoring and remote device control systems. The IoT composed of various WSNs cannot interoperate among networks because of heterogeneous communication protocol and different data representation of each network, but can facilitate interconnection and information exchange among networks via the DDS, which is communication middleware standard that aims to enable real-time, high performance and interoperable data exchanges. In this paper, we proposed design of Zigbee Adaptor for two-way interoperation and data exchange between Zigbee network and other networks in the IoT. Zigbee Adaptor communicates with Zigbee network according to the Zigbee protocol and communicates with external networks via DDS. DDS-based Zigbee Adaptor can facilitate interoperation between a Zigbee network and external networks by systematic cooperation among its components.

A study on the wire reduction design and effect analysis for the train vehicle line (화물열차 분산제어시스템 개발에 관한 연구)

  • Lee, Kangmi;Lee, Jaeho;Yoon, Yong-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.778-784
    • /
    • 2017
  • In this paper, we propose wired and wireless distributed control systems designed to improve the freight logistics efficiency and verify wired distributed control systems. The verification condition required that 50 cargo vehicles be connected and operated to travel 21 km from Busan Sinhang station to Jinlye Station at an average speed of about 100km/h. The verification results show that the traction output and braking output of the control and controlled cars are dispersed by the wired distributed control system. The application is expected to more than double the efficiency of the logistics compared to the existing freight transportation system. However, in the case of the wired distributed control system, cable installation and maintenance are difficult, and it is impossible to change the combination of freight vehicles. Through the verification of the wired distributed control system, the applicability of distributed control systems to freight vehicles in Korea was confirmed and the system was further developed to produce a wireless distributed control system. In order to apply the wireless distributed control system, a propagation environment analysis for the ISM band was performed in the testbed and, as a result, it was confirmed that Wifi technology using the ISM band could be utilized. In order to use the WDP (Wireless Distributed Power) devices newly installed in the target vehicles, the transmission / reception control signals associated with the propulsion / braking / total control devices are defined. In the case of wireless distributed control systems, the convenience of their application and operation is guaranteed, but reliability and emergency safety measures should because of the dependence of the control of the vehicle on radio signals.

A decentralized approach to damage localization through smart wireless sensors

  • Jeong, Min-Joong;Koh, Bong-Hwan
    • Smart Structures and Systems
    • /
    • v.5 no.1
    • /
    • pp.43-54
    • /
    • 2009
  • This study introduces a novel approach for locating damage in a structure using wireless sensor system with local level computational capability to alleviate data traffic load on the centralized computation. Smart wireless sensor systems, capable of iterative damage-searching, mimic an optimization process in a decentralized way. The proposed algorithm tries to detect damage in a structure by monitoring abnormal increases in strain measurements from a group of wireless sensors. Initially, this clustering technique provides a reasonably effective sensor placement within a structure. Sensor clustering also assigns a certain number of master sensors in each cluster so that they can constantly monitor the structural health of a structure. By adopting a voting system, a group of wireless sensors iteratively forages for a damage location as they can be activated as needed. Since all of the damage searching process occurs within a small group of wireless sensors, no global control or data traffic to a central system is required. Numerical simulation demonstrates that the newly developed searching algorithm implemented on wireless sensors successfully localizes stiffness damage in a plate through the local level reconfigurable function of smart sensors.