• Title/Summary/Keyword: wireless control network

Search Result 1,580, Processing Time 0.029 seconds

A Hybrid MAC Protocol for Wireless Sensor Networks Enhancing Network Performance (무선센서 네트워크에서 네트워크 성능을 향상시키는 하이브리드 MAC 프로토콜)

  • Kim, Seong-Cheol;Kim, Dong-Min
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.2
    • /
    • pp.177-183
    • /
    • 2008
  • In this paper we suggest a hybrid MAC protocol for wireless sensor networks (WSN) to enhance network performance. The proposed MAC scheme is specifically designed for wireless sensor networks which consist of lots nodes. The contributions of this paper are: First, the proposed scheduling algorithm is independent of network topology. Even though the BS node has lots of one hop node in dense mode network, all the time slots can be assigned fully without increasing frequencies. Second, BS one hop nodes can use more than one time slots if necessary, so total network performance is increased. We compare the network performance of the proposed scheme with previous one, HyMAC [1].

  • PDF

Energy-efficient Relay MAC with Dynamic Power Control in Wireless Body Area Networks

  • Cai, Xuelian;Yuan, Jingjing;Yuan, Xiaoming;Zhu, Wu;Li, Jiandong;Li, Changle;Ullah, Sana
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.7
    • /
    • pp.1547-1568
    • /
    • 2013
  • Wireless body area network (WBAN) is an emerging short-range wireless communication network with sensor nodes located on, in or around the human body for healthcare, entertainment and ubiquitous computing. In WBANs, energy is severely constrained which is the prime consideration in the medium access control (MAC) protocol design. In this paper, we propose a novel MAC protocol named Energy-efficient Relay MAC with dynamic Power Control (ERPC-MAC) to save energy consumption. Without relying on the additional devices, ERPC-MAC employs relaying nodes to provide relay service for nodes which consume energy fast. Accordingly the superframe adjustment is performed and then the network topology can be smoothly switched from single-hop to multi-hop. Moreover, for further energy saving and reliability improvement, the dynamic power control is introduced to adjust the power level whenever a node transmits its packets to the coordinator or the relaying node. To the best of the authors' knowledge, this is the first effort to integrate relay, topology adjustment and power control to improve the network performance in a WBAN. Comprehensive simulations are conducted to evaluate the performance. The results show that the ERPC-MAC is more superior to the existing standard and significantly prolongs the network lifetime.

A Study on the Energy Efficient MAC Layer ARQ Protocol for Wireless Ubiquitous Networks (무선 유비쿼터스 네트워크를 위한 에너지 효율적인 MAC Layer ARQ 프로토콜에 대한 연구)

  • Roh, Jae-Sung;Kim, Wan-Tae
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.1
    • /
    • pp.54-60
    • /
    • 2011
  • The development of wireless sensor networks (WSN) can be motivated by several types of applications. However, these applications demand an energy-efficient WSN that can prolong the network lifetime and can provide high throughput, low latency and delay. Designing wireless sensor networks with the capability of prolonging network lifetime catch the attention of many researchers in wireless system and network field. Contrasts with Mobile Ad Hoc Network system, Wireless Sensor Networks designs focused more on survivability of each node in the network instead of maximizing data throughput or minimizing end-to-end delay. In this paper, we will study part of data link layer in Open Systems Interconnection (OSI) model, called medium access control (MAC) layer. Since the MAC development of energy aware MAC Protocol for wireless sensor layer controls the physical radio part, it has a large impact on the overall energy consumption and the lifetime of a node. This paper proposes a analytical approach that tries to reduce idle energy consumption, and shows the increasement of network end-to-end arrival rate due to efficiency in energy consumption from time slot management.

A Survey on Fly-By-Wireless Flight Control Technology (Fly-By-Wireless 비행제어 기술의 연구 동향)

  • Han, Jung-Soo;Ha, Chul-Su;O, Su-Hun;Kang, Seung-Eun;Ko, Sangho
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.22 no.1
    • /
    • pp.7-14
    • /
    • 2014
  • This paper deals with recent research cases and directions of Fly-By-Wireless (FBWLS) flight control technology. FBWLS is a new type of flight control system technology with the aim of solving the problems mainly caused by the increasing amount of wires in aircraft to which Fly-By-Wire (FBW) technology applies. Therefore, in FBWLS flight control system the wired communication system is replaced with a wireless communication system. Currently the FBWLS flight control technology is at an initial development stage and thus this paper surveys deals with the cases in the viewpoint of technology feasibility. In this context, this paper analyzes technology that needs further studies to secure the reliability, stability and accuracy to the similar level of the corresponding FBW system. Since the major problems of FBWLS technology are packet losses and time delays so that this paper suggests the research direction of wireless communication protocol selection, optimization of wireless communication network and controller design considered communication environment.

Cell Grouping Design for Wireless Network using Artificial Bee Colony (인공벌군집을 적용한 무선네트워크 셀 그룹핑 설계)

  • Kim, Sung-Soo;Byeon, Ji-Hwan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.2
    • /
    • pp.46-53
    • /
    • 2016
  • In mobile communication systems, location management deals with the location determination of users in a network. One of the strategies used in location management is to partition the network into location areas. Each location area consists of a group of cells. The goal of location management is to partition the network into a number of location areas such that the total paging cost and handoff (or update) cost is a minimum. Finding the optimal number of location areas and the corresponding configuration of the partitioned network is a difficult combinatorial optimization problem. This cell grouping problem is to find a compromise between the location update and paging operations such that the cost of mobile terminal location tracking is a minimum in location area wireless network. In fact, this is shown to be an NP-complete problem in an earlier study. In this paper, artificial bee colony (ABC) is developed and proposed to obtain the best/optimal group of cells for location area planning for location management system. The performance of the artificial bee colony (ABC) is better than or similar to those of other population-based algorithms with the advantage of employing fewer control parameters. The important control parameter of ABC is only 'Limit' which is the number of trials after which a food source is assumed to be abandoned. Simulation results for 16, 36, and 64 cell grouping problems in wireless network show that the performance of our ABC is better than those alternatives such as ant colony optimization (ACO) and particle swarm optimization (PSO).

Sensor Network based Localization and Navigation of Mobile Robot

  • Moon, Tae-Kyung;Kuc, Tae-Yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1162-1167
    • /
    • 2003
  • This paper presents a simple sensor network consists of a group of sensors, RF components, and microprocessors, to perform a distributed sensing and information transmission using wireless links. In the proposed sensor network, though each sensor node has a limited capability and a simple signal-processing engine, a group of sensor nodes can perform a various tasks through coordinated information sharing and wireless communication in a large working area. Using the capability of self-localization and tracking, we show the sensor network can be applied to localization and navigation of mobile robot in which the robot has to be coordinated effectively to perform given task in real time.

  • PDF

Analytic Throughput Model for Network Coded TCP in Wireless Mesh Networks

  • Zhang, Sanfeng;Lan, Xiang;Li, Shuang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.9
    • /
    • pp.3110-3125
    • /
    • 2014
  • Network coding improves TCP's performance in lossy wireless networks. However, the complex congestion window evolution of network coded TCP (TCP-NC) makes the analysis of end-to-end throughput challenging. This paper analyzes the evolutionary process of TCP-NC against lossy links. An analytic model is established by applying a two-dimensional Markov chain. With maximum window size, end-to-end erasure rate and redundancy parameter as input parameters, the analytic model can reflect window evolution and calculate end-to-end throughput of TCP-NC precisely. The key point of our model is that by the novel definition of the states of Markov chain, both the number of related states and the computation complexity are substantially reduced. Our work helps to understand the factors that affect TCP-NC's performance and lay the foundation of its optimization. Extensive simulations on NS2 show that the analytic model features fairly high accuracy.

Multi-Collector Control for Workload Balancing in Wireless Sensor and Actuator Networks

  • Han, Yamin;Byun, Heejung
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.3
    • /
    • pp.113-117
    • /
    • 2021
  • The data gathering delay and the network lifetime are important indicators to measure the service quality of wireless sensor and actuator networks (WSANs). This study proposes a dynamically cluster head (CH) selection strategy and automatic scheduling scheme of collectors for prolonging the network lifetime and shorting data gathering delay in WSAN. First the monitoring region is equally divided into several subregions and each subregion dynamically selects a sensor node as CH. These can balance the energy consumption of sensor node thereby prolonging the network lifetime. Then a task allocation method based on genetic algorithm is proposed to uniformly assign tasks to actuators. Finally the trajectory of each actuator is optimized by ant colony optimization algorithm. Simulations are conducted to evaluate the effectiveness of the proposed method and the results show that the method performs better to extend network lifetime while also reducing data delay.

A Window-Based Congestion Control Algorithm for Wireless TCP in Heterogeneous Networks

  • Byun, Hee-Jung;Lim, Jong-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.474-479
    • /
    • 2004
  • This paper describes a feedback-based congestion control algorithm to improve TCP performance over wireless network. In this paper, we adjust the packet marking probability at the router for Max-Min fair sharing of the bandwidth and full utilization of the link. Using the successive ECN (Explicit Congestion Notification), the proposed algorithm regulates the window size to avoid the congestion and sees the packet loss only due to the wireless link error. Based on the asymptotic analysis, it is shown that the proposed algorithm guarantees the QoS of the wireless TCP. The effectiveness of the proposed algorithm is demonstrated by simulations.

  • PDF