• Title/Summary/Keyword: wireless body sensor network

Search Result 113, Processing Time 0.026 seconds

A Survey on Key Management Strategies for Different Applications of Wireless Sensor Networks

  • Raazi, Syed Muhammad Khaliq-Ur-Rahman;Lee, Sung-Young
    • Journal of Computing Science and Engineering
    • /
    • v.4 no.1
    • /
    • pp.23-51
    • /
    • 2010
  • Wireless Sensor Networks (WSN) have proved to be useful in applications that involve monitoring of real-time data. There is a wide variety of monitoring applications that can employ Wireless Sensor Network. Characteristics of a WSN, such as topology and scale, depend upon the application, for which it is employed. Security requirements in WSN vary according to the application dependent network characteristics and the characteristics of an application itself. Key management is the most important aspect of security as some other security modules depend on it. We discuss application dependent variations in WSN, corresponding changes in the security requirements of WSN and the applicability of existing key management solutions in each scenario.

A Study on the Sensor Node Based Wireless Network Communication System for Efficient EEG Transmission (효율적인 EEG 전송을 위한 센서노드기반의 무선통신시스템에 관한 연구)

  • Jo, Jun-Mo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.5
    • /
    • pp.791-796
    • /
    • 2013
  • Advent of the brain wave health care system is considered as an important issues in the industrial and research area in these days. It is necessary to detect EEG signals in real-time in order to support the medical emergency service for the epileptic or brain infarct patients. Since the efficient network support is an essential factor for the system, several topologies using sensor node based wireless body area network is suggested and simulated in this paper. Finally the Opnet simulation result is evaluated for the efficient topology of the body area network.

SDN-based wireless body area network routing algorithm for healthcare architecture

  • Cicioglu, Murtaza;Calhan, Ali
    • ETRI Journal
    • /
    • v.41 no.4
    • /
    • pp.452-464
    • /
    • 2019
  • The use of wireless body area networks (WBANs) in healthcare applications has made it convenient to monitor both health personnel and patient status continuously in real time through wearable wireless sensor nodes. However, the heterogeneous and complex network structure of WBANs has some disadvantages in terms of control and management. The software-defined network (SDN) approach is a promising technology that defines a new design and management approach for network communications. In order to create more flexible and dynamic network structures in WBANs, this study uses the SDN approach. For this, a WBAN architecture based on the SDN approach with a new energy-aware routing algorithm for healthcare architecture is proposed. To develop a more flexible architecture, a controller that manages all HUBs is designed. The proposed architecture is modeled using the Riverbed Modeler software for performance analysis. The simulation results show that the SDN-based structure meets the service quality requirements and shows superior performance in terms of energy consumption, throughput, successful transmission rate, and delay parameters according to the traditional routing approach.

Enhanced Secure Sensor Association and Key Management in Wireless Body Area Networks

  • Shen, Jian;Tan, Haowen;Moh, Sangman;Chung, Ilyong;Liu, Qi;Sun, Xingming
    • Journal of Communications and Networks
    • /
    • v.17 no.5
    • /
    • pp.453-462
    • /
    • 2015
  • Body area networks (BANs) have emerged as an enabling technique for e-healthcare systems, which can be used to continuously and remotely monitor patients' health. In BANs, the data of a patient's vital body functions and movements can be collected by small wearable or implantable sensors and sent using shortrange wireless communication techniques. Due to the shared wireless medium between the sensors in BANs, it may be possible to have malicious attacks on e-healthcare systems. The security and privacy issues of BANs are becoming more and more important. To provide secure and correct association of a group of sensors with a patient and satisfy the requirements of data confidentiality and integrity in BANs, we propose a novel enhanced secure sensor association and key management protocol based on elliptic curve cryptography and hash chains. The authentication procedure and group key generation are very simple and efficient. Therefore, our protocol can be easily implemented in the power and resource constrained sensor nodes in BANs. From a comparison of results, furthermore, we can conclude that the proposed protocol dramatically reduces the computation and communication cost for the authentication and key derivation compared with previous protocols. We believe that our protocol is attractive in the application of BANs.

Design of Implantable Wireless Sensor Node to Monitor the Livestock Body Temperature (가축의 실시간 체온 측정을 위한 이식형 무선 센서 노드 설계)

  • Kim, Hyun-Joong;Yang, Hyun-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.585-588
    • /
    • 2009
  • Wireless Sensor Network (WSN) is consisted of lots of tiny sensor nodes with limited processing power and computing resources. Thus, the most critical and fundamental element of WSN technology is sensor node, which gathers environmental information and transmits it to the user application systems. Due to the technological advancement, sensor nodes are become smaller and more intelligent, hence, expand their application area. Specifically, implantable wireless sensor node technology, to monitor and treat disease by implanting tiny sensor nodes into human body or livestock, shows further directions of WSN. In this paper, we have designed an implantable wireless sensor node to monitor livestock body temperature in real time. We also discussed on the additional considerations to implement real time bio-monitoring systems.

  • PDF

Design and Implementation of Remote Diagnostics System for Wireless Sensor Network (Wireless Sensor Network를 이용한 원격 진료 시스템의 설계 및 구현)

  • Kim, Won-Joong;Jo, Jae-Joon;An, Sun-Shin
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.06d
    • /
    • pp.204-207
    • /
    • 2007
  • 최근 대두되고 있는 무선 센서네트워크는 실생활의 많은 부분에 있어 그 응용 분야를 넓혀 가고 있다. 본 연구는 WSN의 응용 중 Human Health Care에 주안을 두어 WSN을 이용한 원격 진료 시스템에 대해 설계 및 구현을 하였다. 원격 진료 시스템을 위해 각 센서 노드들은 인체의 Body 정보를 수집할 수 있는 센서들을 가지고 신체의 각 부위에 부착된다. 또한 각 센서 노드들은 고유의 Human Body Code를 가지고 있으며 이 고유의 Code에 의해 인체의 어느 부위에서 측정된 Data인지를 Sink 노드로 전송하게 된다. Sink 노드는 수집된 정보를 원격에 위치한 의료진들에게 전송하며 원격의 의료진들은 Sink 노드에서 전송된 정보를 바탕으로 진료 정보를 환자 및 User에게 Feedback하게 된다. Human Body Code는 인체를 세분화하고 각 세분화한 신체 부위에 계층적으로 고유의 Code를 부여한다. 본 연구에서는 실제 Human Body Code를 직접 제작한 센서 Node에 주입하여 Human Body Network을 구성하여 인체에서 센싱되는 Data를 원격에 위치한 PC에서 진료 가능한 원격 진료 시스템을 구현하였다.

  • PDF

Towards Key Issues of Disaster Aid based on Wireless Body Area Networks

  • Liu, Jianqi;Wang, Qinruo;Wan, Jiafu;Xiong, Jianbin;Zeng, Bi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.5
    • /
    • pp.1014-1035
    • /
    • 2013
  • With recent advances in wireless communication and low-power miniaturized biomedical sensor and semiconductor technologies, wireless body area networks (WBAN) has become an integral part of the disaster aid system. Wearable vital sign sensors can track patients' status and location, thus enhancing disaster rescue efficiency. In the past few years, most of the literatures in the area of disaster aid system based on WBAN have focused on issues concerning wireless sensor design, sensor miniaturization, energy efficiency and communication protocols. In this paper, we will give an overview of disaster aid, discuss about the types of network communication as well as outline related issues. We will emphasize on analyzing six key issues in employing the disaster aid system. Finally, we will also highlight some of the challenges that still need to be addressed in the future in order to help the disaster aid system be truly and widely accepted by the public.

Symptoms-Based Power-Efficient Communication Scheme in WBSN

  • Sasi, Juniven Isin D.;Yang, Hyunho
    • Smart Media Journal
    • /
    • v.3 no.1
    • /
    • pp.28-32
    • /
    • 2014
  • It is practical nowadays to automate data recording in order to prevent loss and tampering of records. There are existing technologies that satisfy this needs and one of them is wireless sensor networks (WSN). Wireless body sensor networks (WBSN) are wireless networks and information-processing systems which are deployed to monitor medical condition of patients. In terms of performance, WBSNs are restricted by energy, and communication between nodes. In this paper, we focused in improving the performance of communication to achieve less energy consumption and to save power. The main idea of this paper is to prioritize nodes that exhibit a sudden change of vital signs that could put the patient at risk. Cluster head is the main focus of this study in order to be effective; its main role is to check the sent data of the patient that exceeds threshold then transfer to the sink node. The proposed scheme implemented added a time-based protocol to sleep/wakeup mechanism for the sensor nodes. We seek to achieve a low energy consumption and significant throughput in this study.

Remote Vital Sign Monitoring System Based on Wireless Sensor Network using Ad-Hoc Routing (애드혹 라우팅을 이용한 무선센서네트워크 기반의 원격 생체신호 모니터링 시스템)

  • Walia Gaurav;Lee Young-Dong;Chung Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.426-429
    • /
    • 2006
  • A distributed healthcare monitoring system prototype for clinical and trauma patients, was developed, using wireless sensor network node. The proposed system aimed to measure various vital physiological health parameters like ECG and body temperature of patients and elderly persons and transfer his/ her health status wirelessly in Ad-hoc network, to remote base station which was connected to doctor's PDA/PC or to a hospital's main Server using wireless sensor node. The system also aims to save the cost of healthcare facility for patients and the operating power of the system because sensor network is deployed widely and the distance from sensor to base station was shorter than in general centralized system. The wireless data communication will follow IEEE 802.15.4 frequency communication with ad-hoc routing thus enabling every motes attached to patients, to form a wireless data network to send data to base-station, providing mobility and convenience to the users in home environment.

  • PDF

Channel Characterization and Transmission Efficiency Analysis of Wireless Body Area Network (WBAN 채널 특성과 전송 효율 분석)

  • Ahn, Byoung-Jik;Song, Seong-Moo;Kim, Sun-Woo;Choi, Jae-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.8
    • /
    • pp.985-994
    • /
    • 2012
  • This paper presents the real channel measurements and investigates their statistical characterization in wireless body area network(WBAN). In on-/off body channel, the measurements are performed with some representative human movements for considering human movements. Moreover, three signal transmission schemes with outage constraint are studied for getting total power consumption in each transmission scheme. Using the real channel measurements, between theoretical and realistic simulation are compared. This paper shows that power efficiency is improved through cooperative communication, and how much position of sensor node and human movement affect signal transmission power.