• Title/Summary/Keyword: wireless body area network

Search Result 133, Processing Time 0.023 seconds

Performance Analysis of the Underwater Acoustic Communication with Low Power Consumption by Sea Trials (해상실험을 통한 저전력 수중음향통신 기법의 성능 분석)

  • Lee, Tae-Jin;Kim, Ki-Man
    • Journal of Navigation and Port Research
    • /
    • v.35 no.10
    • /
    • pp.811-816
    • /
    • 2011
  • In this paper, we analysis to consider the performance of PSPM (Phase Shift Pulse-position Modulation), the one of the low power communication technique, in near-field underwater sound channel by sea trial. PSPM is a QPSK(Quadrature Phase Shift Keying) modulation combined with PPM(Pulse Position Modulation) for low power communication in WBAN(Wireless Body Area Network). It is known that the bandwidth efficiency of PSPM is lower than conventional PSK but the power efficiency increases. In this paper, we will analyze the BER performance of PSPM using data acquired from the sea trials. The BER of QPSK was $6.04{\times}10^{-2}$, PSPM was $3.5{\times}10^{-1}$. Also, PSNR of QPSK was 9.37 dB and in case of PSPM was 9.11 dB.

Wireless Body Area Network 기술 동향

  • Jang, Byeong-Jun;Choe, Seon-Ung
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.3
    • /
    • pp.35-46
    • /
    • 2008
  • 전 세계적으로 u-Health 서비스에 대한 관심이 증가함에 따라 무선 기술 측면에서 u-Health의 핵심 기술인 WBAN에 대한 연구 또한 활발히 진행되고 있다. 최근 IEEE에서는 WBAN에 대한 표준화를 활발히 진행 중에 있으며, 주파수 배분 측면에서는 전 세계적으로 $402{\sim}405$ MHz 대역이 WBAN용 주파수로 할당되고 있다. 본 고에서는 WBAN의 최근 기술 동향을 살펴보기 위해 먼저 WBAN 서비스를 위해 현재 고려되고 있는 다양한 주파수 대역과 전파전파 특성을 살펴보고, 다음으로 WBAN의 최신 표준화 동향에 대해 살펴본다. 마지막으로 WBAN의 적용 예 및 주요 기술적인 이슈에 대해 살펴보고자 한다.

Cryptanalysis of an 'Efficient-Strong Authentiction Protocol (E-SAP) for Healthcare Applications Using Wireless Medical Sensor Networks'

  • Khan, Muhammad Khurram;Kumari, Saru;Singh, Pitam
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.5
    • /
    • pp.967-979
    • /
    • 2013
  • Now a day, Wireless Sensor Networks (WSNs) are being widely used in different areas one of which is healthcare services. A wireless medical sensor network senses patient's vital physiological signs through medical sensor-nodes deployed on patient's body area; and transmits these signals to devices of registered medical professionals. These sensor-nodes have low computational power and limited storage capacity. Moreover, the wireless nature of technology attracts malicious minds. Thus, proper user authentication is a prime concern before granting access to patient's sensitive and private data. Recently, P. Kumar et al. claimed to propose a strong authentication protocol for healthcare using Wireless Medical Sensor Networks (WMSN). However, we find that P. Kumar et al.'s scheme is flawed with a number of security pitfalls. Information stored inside smart card, if extracted, is enough to deceive a valid user. Adversary can not only access patient's physiological data on behalf of a valid user without knowing actual password, can also send fake/irrelevant information about patient by playing role of medical sensor-node. Besides, adversary can guess a user's password and is able to compute the session key shared between user and medical sensor-nodes. Thus, the scheme looses message confidentiality. Additionally, the scheme fails to resist insider attack and lacks user anonymity.

Research on Real-time Stream Data Monitoring for BodyNet (BodyNet 에서의 스트림 데이터 실시간 모니터링 기법의 연구)

  • Lee, Seul-A;Choi, Ok-ju;Lee, Minsoo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.11a
    • /
    • pp.126-129
    • /
    • 2010
  • WBAN(Wireless Body Area Network)기반의 의료 응용으로 실시간 모니터링 시스템을 구현하였다. 특히 산소포화도 생체 센서들로부터 연속적으로 전송되는 스트림 데이터에 대해 다양한 조건을 포함하는 질의들이 실행 되는데 이러한 실시간 모니터링 질의들을 효율적으로 식별하기 위한 질의 인덱스를 설계하였다. 매번 모든 질의들을 실행하기에는 시간이 많이 걸리기 때문에 Interval Skip List 를 이용하여 빠르고 효율적으로 식별하도록 설계하였다. 이로써 위급한 상황의 환자의 건강에 문제가 생겼을 때 신속하게 대처할 수 있는 환경을 제공한다. 본 논문에서는 방대한 양의 스트림 데이터와 이 데이터를 실시간으로 감시할 수 있도록 Interval Skip List 를 스마트 메디컬 스페이스(m-MediNet)에 적용한 방법을 기술하고 있다.

Link Energy Efficiency Routing Strategy for Optimizing Energy Consumption of WBAN (WBAN의 에너지 소비 최적화를 위한 링크 에너지 효율 라우팅 전략)

  • Lee, Jung-jae
    • Journal of Internet Computing and Services
    • /
    • v.23 no.5
    • /
    • pp.1-7
    • /
    • 2022
  • IoT technology that utilizes wireless body area networks (WBAN) and biosensors is an important field in the health industry to minimize resources and monitor patients. In order to integrate IoT and WBAN, a cooperative protocol that constitutes WBAN's limited sensor nodes and rapid routing for efficient data transmission is required. In this paper we propose an we propose an energy efficient and cooperative link energy-efficient routing strategy(LEERS) to solve the problems of redundant data transmission detection and limited network sensor lifetime extention. The proposed scheme considers the hop count node congestion level towards the residual energy sink and bandwidth and parameters. In addition, by determining the path cost function and providing effective multi-hop routing, it is shown that the existing method is improved in terms of residual energy and throughput

Experimental Study on the Effect of Antenna Polarization in WBAN Off-Body Channel (WBAN Off-Body 채널에서 안테나 편파의 영향 분석)

  • Jeon, Jaesung;Ahn, Byoungjik;Kim, Sunwoo;Choi, Jaehoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.2
    • /
    • pp.144-151
    • /
    • 2013
  • This paper investigates the effect of antenna polarization in Wireless Body Area Network(WBAN) off-body channel. The polarizations of antenna are divided into four combinations regarding Line-of-Sight(LOS) and Non-LOS(NLOS) environment. The human body keeps both still standing and moving to show that the impact of the polarization to signal. This paper confirms the performance depending on the polarization of receiver antenna and the combination of the polarizations on the off-body channel.

Performance Analysis of IEEE 802.15.6 MAC Protocol in Beacon Mode with Superframes

  • Li, Changle;Geng, Xiaoyan;Yuan, Jingjing;Sun, Tingting
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.5
    • /
    • pp.1108-1130
    • /
    • 2013
  • Wireless Body Area Networks (WBANs) are becoming increasingly important to solve the issue of health care. IEEE 802.15.6 is a wireless communication standard for WBANs, aiming to provide a real-time and continuous monitoring. In this paper, we present our development of a modified Markov Chain model and a backoff model, in which most features such as user priorities, contention windows, modulation and coding schemes (MCSs), and frozen states are taken into account. Then we calculate the normalized throughput and average access delay of IEEE 802.15.6 networks under saturation and ideal channel conditions. We make an evaluation of network performances by comparing with IEEE 802.15.4 and the results validate that IEEE 802.15.6 networks can provide high quality of service (QoS) for nodes with high priorities.

Implementation of Patient Monitoring System based on Mobile Healthcare (모바일 헬스케어 기반의 환자 모니터링 시스템 구현)

  • Kim, Kyoung-Mok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.12
    • /
    • pp.1-10
    • /
    • 2012
  • In this paper, we propose an patient monitoring system which is suitable for mobile healthcare system. The mobile healthcare system is using portable device such as smartphone and it consists of small computing device. The mobile healthcare system is carry out same performance with desktop computer. We designed medical message structure based on TinyOS to transmit patient's biometric data on the smartphone of medical team, patient and family over the mobile carrier environment, and ported successfully in HBE-Ubi-ZigbeX using NesC. And We confirmed reliable transmission of biometric data on the smartphone by implementing the Android OS based patient information monitoring application to check the status of patient for medical team, patient and family.

Wearable antenna for Body area Network

  • Lim, Eng Gee;Wang, Zhao;Lee, Sanghyuk
    • Journal of Convergence Society for SMB
    • /
    • v.3 no.2
    • /
    • pp.27-32
    • /
    • 2013
  • Wireless Body Area Networks (WBAN) have been made possible by the emergence of small and lightweight wireless systems such as Bluetooth, enabled devices and PDAs. Antennas are an essential part of any WBAN system and due to various technical requirements and physical constraints, careful consideration of their design and deployment is needed. This paper is proposing on the design of wearable antenna as parts of clothing to serve communications functions, such as tracking and navigation in health care applications. The substrates of the wearable antennas will be made from textile materials and since it is wearable, it should have a small size, be light weight, low maintenance, and unobtrusive. This proposed paper will also investigate the influence of different parameters for wearable antenna including types of textile/substrate to ensure that the antenna design satisfies WBAN requirements. The characteristics and behavior of the antenna need to adhere to specifications set by wireless standards and system technology requirements. This means that the transmitting and receiving frequency bands of the various units need to be chosen accordingly. Since there are restrictions on the level of power to which the human body can be exposed to, the antenna as well as other RF system components must be designed to meet these restrictions. Antenna gain, which directly affects power transmitted, is a critical parameter in ensuring power levels fall within the safety guidelines and so will be of primary importance in the design. The electromagnetic interaction between WBAN antennas and devices and the human body will also be explored.

  • PDF

Transmission Latency-Aware MAC Protocol Design for Intra-Body Communications (인체 채널에서 전자기파 전송 지연 특성을 고려한 다중 매체 제어 프로토콜 설계)

  • Kim, Seungmin;Park, JongSung;Ko, JeongGil
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.8 no.8
    • /
    • pp.201-208
    • /
    • 2019
  • Intra-Body Communication (IBC) is a communication method using the human body as a communication medium. The fact that our human body consists of water and electrolyte allow such communication method could work and have strength in low-power. However, because the IBC directly affects to human body by using it as a medium, there was a lack of research in communication protocols of each communication layer. In this paper, we suggests MAC parameters which affects the performance of communication in human body channel, and propose new MAC protocol. Our results shows that our MAC is suitable for supporting high data rate applications with comparable radio duty cycle performance.