• Title/Summary/Keyword: wire-rod

Search Result 100, Processing Time 0.032 seconds

Construction and Optimization of Selective Membrane Electrodes for Determination of Doxepin Hydrochloride in Pharmaceutical Preparations and Biological Fluids (약의 조제와 생물학적 유체에서 독스핀 하이드로클로라이드의 확인을 위한 선택적 막 전극의 구성과 최적화)

  • El-Tohamy, Maha;Razeq, Sawsan;El-Maamly, Magda;Shalaby, Abdalla
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.2
    • /
    • pp.198-207
    • /
    • 2010
  • The construction and performance characteristics of doxepin hydrochloride selective electrodes were developed. Three types of electrodes: plastic membrane I, coated wire II, and coated graphite rod III were constructed based on the incorporation of doxepin hydrochloride with ammonium reineckate. The influence of membrane composition, kind of plasticizer, pH of the test solution, soaking time, and foreign ions on the electrodes was investigated. The electrodes showed a Nernstain response with a mean slope of 57.41 ${\pm}$ 0.5, 56.22 ${\pm}$ 0.2 and 52.88 ${\pm}$ 0.7 mV at $25^{\circ}C$ for electrode I, II and III respectively, over Doxepin hydrochloride concentration range from $1{\times}10^{-2}-1{\times}10^{-6}M$, $5{\tims}10^{-2}-1{\times}10^{-6}M$ and $1{\times}10^{-3}-5{\times}10^{-6}M$, and with a detection limit $5.0{\times}10^{-7}M$, $6.3{\times}10^{-7}M$ and $2.5{\times}10^{-6}M$ for electrode I, II and III respectively. The constructed electrodes gave average selective precise and usable within the pH range 3 - 7. Interferences from common cations, alkaloids, sugars, amino acids and drug excipients were reported. The results obtained by the proposed electrodes were also applied successfully to the determination of the drug in pharmaceutical preparations and biological fluids.

STATUS OF THE ASTRID CORE AT THE END OF THE PRE-CONCEPTUAL DESIGN PHASE 1

  • Chenaud, Ms.;Devictor, N.;Mignot, G.;Varaine, F.;Venard, C.;Martin, L.;Phelip, M.;Lorenzo, D.;Serre, F.;Bertrand, F.;Alpy, N.;Le Flem, M.;Gavoille, P.;Lavastre, R.;Richard, P.;Verrier, D.;Schmitt, D.
    • Nuclear Engineering and Technology
    • /
    • v.45 no.6
    • /
    • pp.721-730
    • /
    • 2013
  • Within the framework of the ASTRID project, core design studies are being conducted by the CEA with support from AREVA and EDF. The pre-conceptual design studies are being conducted in accordance with the GEN IV reactor objectives, particularly in terms of improving safety. This involves limiting the consequences of 1) a hypothetical control rod withdrawal accident (by minimizing the core reactivity loss during the irradiation cycle), and 2) an hypothetical loss-of-flow accident (by reducing the sodium void worth). Two types of cores are being studied for the ASTRID project. The first is based on a 'large pin/small spacing wire' concept derived from the SFR V2b, while the other is based on an innovative CFV design. A distinctive feature of the CFV core is its negative sodium void worth. In 2011, the evaluation of a preliminary version (v1) of this CFV core for ASTRID underlined its potential capacity to improve the prevention of severe accidents. An improved version of the ASTRID CFV core (v2) was proposed in 2012 to comply with all the control rod withdrawal criteria, while increasing safety margins for all unprotected-loss-of-flow (ULOF) transients and improving the general design. This paper describes the CFV v2 design options and reports on the progress of the studies at the end of pre-conceptual design phase 1 concerning: - Core performance, - Intrinsic behavior during unprotected transients, - Simulation of severe accident scenarios, - Qualification requirements. The paper also specifies the open options for the materials, sub-assemblies, absorbers, and core monitoring that will continue to be studied during the conceptual design phase.

Inspection about Influences on the Weld Parts through the Change of the Position of Welding Torch and the Voltage During CO2 Welding (CO2용접에서 용접 토치의 위치변화와 전압이 용접부에 미치는 영향고찰)

  • Kim, Bub-Hun;Kim, Won-Il;Lee, Chil-Soon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.14 no.2
    • /
    • pp.59-65
    • /
    • 2011
  • $CO_2$ Welding which uses $CO_2$ instead of inert gas is most widely used in industrial sites. Welding rod for $CO_2$ Welding is roughly divided into solid wire and flux cored wire. $CO_2$ Welding has higher efficiency than any other welding methods, and also economic and speedy to handle, that's why is used frequently for welding general structures. As most of studies about $CO_2$ Welding are focused on metallurgical changes of successful joints, they developed theories about the change of configuration on weld parts. This study is especially focused on not only the change of configuration on weld parts, but also the change of the penetrating depth through changing the position of welding torch. For inspection, applied AWS A5.20 E70-1 among welding wires and fixed moving angles of torch, but controled the values of voltage and the position of welding. Also Automatic Feed Mechanism is used for exact movement of material, specimen is a piece of steel for general structures. By measuring and analyzing the configuration of sliced section and the values of welding leg length and welding throat after welding, the outcome about the changes turned out.

PIV measurement and numerical investigation on flow characteristics of simulated fast reactor fuel subassembly

  • Zhang, Cheng;Ju, Haoran;Zhang, Dalin;Wu, Shuijin;Xu, Yijun;Wu, Yingwei;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.897-907
    • /
    • 2020
  • The flow characteristics of reactor fuel assembly always intrigue the designers and the experimentalists among the myriad phenomena that occur simultaneously in a nuclear core. In this work, the visual experimental method has been developed on the basis of refraction index matching (RIM) and particle image velocimetry (PIV) techniques to investigate the detailed flow characteristics in China fast reactor fuel subassembly. A 7-rod bundle of simulated fuel subassembly was fabricated for fine examination of flow characteristics in different subchannels. The experiments were performed at condition of Re=6500 (axial bulk velocity 1.6 m/s) and the fluid medium was maintained at 30℃ and 1.0 bar during operation. As for results, axial and lateral flow features were observed. It is shown that the spiral wire has an inhibitory effect on axial flow and significant intensity of lateral flow mixing effect is induced by the wire. The root mean square (RMS) of lateral velocity fluctuation was acquired after data processing, which indicates the strong turbulence characteristics in different flow subchannels.

Feasibility Test of One-Dimensional Sodium Hexatitanate as an Anode Material in Dye-Sensitized Solar Cells (1차원 구조를 가지는 육티탄산 나트륨의 염료감응형 태양전지 음극재 사용 가능성 평가)

  • Badema, Badema;Oh, Kwang-Joong;Cho, Kuk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.5
    • /
    • pp.338-343
    • /
    • 2015
  • Dye sensitized solar cells (DSSCs), which is one of the contending renewable energy sources, have the problem of low efficiency. To improve the efficiency, the fast electron transport and long electron lifetime are required. In this study, one-dimensional sodium hexatitanate, which is expected to have an advantageous structure for electron transports, was synthesized and the feasibility of the material on DSSC was tested. Its physical properties were characterized by the SEM, XRD, and BET method. The dye adsorption and solar cell properties were also characterized. In addition to the expectation of fast electron transport, sodium hexatitanate showed longer electron lifetime: This means sodium hexatitanate can improve the DSSC efficiency. However, it showed low current and voltage because of the low surface area leading to the low amount of dye adsorbed. Therefore, it should be mixed with titanium oxide with high surface area for the optimal performance.

The effect of compress residual stresses for fatigue strength of SUP7-50CrV4 Steel (SUP7-50CrV4강의 피로강도에 미치는 압축잔류응력의 영향)

  • 박경동;정찬기
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.247-252
    • /
    • 2001
  • Recently the steel parts used at automobiles are required to be used under high stress more than ever before in need of the weight down. To achieve this requirement of a high strength steel, it must be necessary to decrease inclusion content and surface defect as like decarburization, surface roughness etc.. In this study, the surface conditions are measured to know the influence on fatigue properties by two cases of shot peening of two-stage shot peening and single-stage shot peening. And for this study, two kinds of spring steel (SUP7, 50CrV4) are used. This study shows the outstanding improvement of fatigue properties at the case of two-stage shot peening in the rotary bending fatigue test and this is assumed to be from on low stress condition, the 1st stage shot peening is not affected by nonmetallic inclusion under metal. it is possible that the 2nd stage shot peening increases the fatigue life and the high stress but that is affected by nonmetallic inclusion under metal. so far beeasily 50CrV4 have made high stress. But, results also show fatigue failures originated at inclusion near surface, and this inclusion type is turned out to be a alumina of high hardness.

  • PDF

Study on the Fabrication of Ultrathin Punch (초미세 천공 펀치의 성형에 대한 연구)

  • Im, Hyeong-Jun;Im, Yeong-Mo;Kim, Su-Hyeon;Gwak, Yun-Geun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.12
    • /
    • pp.145-150
    • /
    • 2000
  • Micro punching is one of general methods to fabricate simple holes such as permanent ink-jet printer nozzles. A thin punch, that is need for micro punching, usually has been obtained by mechanical machining. There are some method to obtain a thin punch from a cylindrical rod, e.g., microgrinding and WEDG (Wire Electro-Discharge Grinding). Inefficiently, only one punch can be obtained from these machining methods. In contrast with these methods, many punches can be fabricated simultaneously by electrochemical process. Electrochemical process has usually aimed to obtain very sharp probe for atomic force microscopy (AFM) or scanning tunneling microscopy (STM), and it has not been considered the whole shape of a probe in spite of good merits. In this paper, an ultrathin punch with a tapered shape and a cylindrical tip is newly fabricated by electrochemical process.

  • PDF

Experimental Methodology Development for SFR Subchannel Analysis Code Validation with 37-Rods Bundle (소듐냉각고속로 부수로 해석코드 검증을 위한 37봉다발 실험방법 개념 개발)

  • Euh, Dong-Jin;Chang, Seok-Kyu;Bae, Hwang;Kim, Seok;Kim, Hyung-Mo;Choi, Hae-Seob;Choi, Sun-Rock;Lee, Hyung-Yeon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.6
    • /
    • pp.89-94
    • /
    • 2014
  • The 4th generation SFR is being designed with a milestone of construction by 2028. It is important to understand the subchannel flow characteristics in fuel assembly through the experimental investigations and to estimate the calculation uncertainties for insuring the confidence of the design code calculation results. The friction coefficient and the mixing coefficient are selected as primary parameters. The two parameters are related to the flow distribution and diffusion. To identify the flow distribution, an iso-kinetic method was developed based on the previous study. For the mixing parameters, a wire mesh system and a laser induced fluorescence methods were developed in parallel. The measuring systems were adopted on 37 rod bundle test geometry, which was developed based on the Euler number scaling. A scaling method for a design of experimental facility and the experimental identification techniques for the flow distribution and mixing parameters were developed based on the measurement requirement.

The Study on the Microstructure and Mechanical Properties of the Nodular Indefinite Chilled Iron Containing Ni (Ni 함유 NICI(Nodular Indefinite Chilled Iron)의 미세조직과 기계적성질에 관한 연구)

  • Baek, Eung-Ryul;Oh, Seok-Jung;Villando, Thursdiyanto
    • Journal of Korea Foundry Society
    • /
    • v.26 no.4
    • /
    • pp.180-183
    • /
    • 2006
  • The effects of adding Ni on microstructure and mechanical properties of Nodular Indefinite Chilled Iron (NICI) were studied. Thermal fatigue, hardness, tensile properties, wear resistance, are very important factors for NICI used for hot working roll and wire rod mill. The results show that addition 4% nickel has changed pearlite to bainite. Bainite matrix is superior to pearlite matrix on wear resistance, hardness and strength and will increase performance lifetime of NICI conventional roll material. Based in the bainitic microstructure, hardness and tensile property increase up to 48 HRc and $72\;kg/mm^2$, respectively.

The effect of compress residual stresses for fatigue strength of Spring Steel (스프링강의 피로강도에 미치는 압축잔유응력의 영향)

  • 박경동;정찬기
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.338-343
    • /
    • 2001
  • Recently the steel parts used at automobiles are required to be used under high stress more than ever before in need of the weight down. To achieve this requirement of a high strength steel, it must be necessary to decrease inclusion content and surface defect as like decarburization, surface roughness etc., In this study, the surface conditions are measured to know the influence on fatigue properties by two cases of shot peening of two-stage shot peening and single-stage shot peening. And for this study, two kinds of spring steel(SAE 9254, DIN 50CrV4) are made. This study shows the outstanding improvement of fatigue properties at the case of two-stage shot peening in the rotary bending fatigue test and this is assumed to be from (1) on low stress condition, the single stage shot peening is not affected by nonmetallic inclusion under metal. (2) it is possible that the two-stage shot peening increases the fatigue life and the high stress, but, that is affected by nonmetallic inclusion under metal. (3) so far, beeasily 50CrV4 have made high stress. But, results also show fatigue failures originated at inclusion near surface, and this inclusion type is turned out to be a alumina of high hardness.

  • PDF