• 제목/요약/키워드: wire length.

검색결과 517건 처리시간 0.029초

와이어 소 머신용 중공롤러의 변위량과 응력해석에 관한 연구 (A Study on the Displacement and Stress Analysis of Hollow Rollers for a Wire Saw Machine)

  • 김청균
    • 한국가스학회지
    • /
    • 제18권2호
    • /
    • pp.10-15
    • /
    • 2014
  • 본 연구에서는 원통형 중공롤러를 갖는 와이어 소 머신에 대한 변위와 응력강도 안전성 해석결과를 제시하고 있다. 유한요소법을 사용하여 세 개의 튜브 사이에 Y형상의 편위형 컬럼과 수직형 컬럼을 설치한 중공롤러에서 변형거동과 응력강도 안전성을 높인 중공롤러를 개발하고자 한다. 동일한 직경과 길이를 갖지만, 중량을 달리하는 중공롤러 모델에서 Y 형상의 편위형 및 수직형 중공롤러에 작용하는 변위거동 안전성은 중공롤러의 전체길이에 의해 더 많은 영향을 받는 것으로 나타는데, 이것은 중공롤러의 굽힘 모멘트와 밀접한 관련이 있다. 그러나, 중공롤러의 응력강도는 중량 차이가 크지 않을 경우 절단면의 형상에 의해 더 큰 영향을 받는 것으로 나타났다. 따라서, 중공롤러의 강도안전성을 높이고, 총중량을 낮추기 위해서는 Y형상을 갖는 중공롤러를 사용하는 것이 바람직함을 알 수 있다.

Parametric study of a new tuned mass damper with pre-strained SMA helical springs for vibration reduction

  • Hongwang Lv;Bin Huang
    • Smart Structures and Systems
    • /
    • 제31권1호
    • /
    • pp.89-100
    • /
    • 2023
  • This paper conducts a parametric study of a new tuned mass damper with pre-strained superelastic SMA helical springs (SMAS-TMD) on the vibration reduction effect. First, a force-displacement relation model of superelastic SMA helical spring is presented based on the multilinear constitutive model of SMA material, and the tension tests of the six SMA springs fabricated are implemented to validate the mechanical model. Then, a dynamic model of a single floor steel frame with the SMAS-TMD damper is set up to simulate the seismic responses of the frame, which are testified by the shaking table tests. The wire diameter, initial coil diameter, number of coils and pre-strain length of SMA springs are extracted to investigate their influences on the seismic response reduction of the frame. The numerical and experimental results show that, under different earthquakes, when the wire diameter, initial coil diameter and number of coils are set to the appropriate values so that the initial elastic stiffness of the SMA spring is between 0.37 and 0.58 times of classic TMD stiffness, the maximum reduction ratios of the proposed damper can reach 40% as the mass ratio is 2.34%. Meanwhile, when the pre-strain length of SMA spring is in a suitable range, the SMAS-TMD damper can also achieve very good vibration reduction performance. The vibration reduction performance of the SMAS-TMD damper is generally equal to or better than that of the classic optimal TMD, and the proposed damper effectively suppresses the detuning phenomena that often occurs in the classic TMD.

팬텀을 이용한 다기능 위.십이지장관 코일 카테타의 유용성 평가 (Usefuless of Multi-functional Gastroduodenal Coil Catheter with Phantom)

  • 임진오;김태형;정양화;최원찬;신지훈;송호영
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제26권4호
    • /
    • pp.21-26
    • /
    • 2003
  • 새로 개발된 다기능 위.십이지장관 코일 카테타의 유용성을 체외실험을 통하여 평가하고자 한다. 위.십이지장 코일 카테타는 전체길이가 150 cm되게 하여 두께 0.3 mm의 스테인레스 세선을 내경 1.3 mm 코일스프링으로 만들고 폴리에틸렌계의 열수축 튜브를 피복하였다. 카테타의 원위부 끝에서 2 0cm 지점까지 금 표식자 7개를 부착하여 방사선 투시상 길이 측정이 가능하게 하였으며, 원위부 7cm, 13 cm, 19 cm 지점에 조영제 분사가 가능하도록 측부 분사구를 제작하였다. 기존의 5 Fr. 혈관용 카테타와 새롭게 제작된 코일 카테타를 대상으로 방사선 불투과도와 조영제 분사능력을 평가하였다. 방사선 불투과도는 필름농도를 비교하였고, 조영제 분사능력은 아크릴을 이용하여 4개의 함을 제작하고 그 내부에 카테타를 위치시킨 후 자동주입기를 이용하여 생리식염수를 주입하여 카테타 내부에 안내철사를 삽입했을 경우와 하지 않았을 경우에서의 조영제 분사율을 측정하였다. 방사선 불투과도는 5 Fr. 혈관용 카테타에서 0.51, 새롭게 제작된 코일 카테타는 0.31이 측정되었고, 조영제 분사량은 5 Fr. 혈관용 카테타는 안내철사를 삽입한 경우와 삽입하지 않은 경우 동일하게 원위부에서만 99.5%분사하였다. 코일 카테타는 안내철사를 삽입한 경우 원위부로부터 각각 1.17%, 18.8%, 41.8%, 38.2%가 분사되었고 안내철사를 삽입하지 않았을 경우 원위부로부터 각각 19.5%, 32.6%, 27.7%, 20.3%가 분사되었다. 새로 개발된 위.십이지장 카테타는 기존의 카테타와 비교하여 방사선 투시상 확인이 용이하여 길이측정이 쉽고, 조영제 분사능력이 우수하여 위.십이지장의 중재시술시 유용하게 사용될 것으로 판단된다.

  • PDF

Optimization of GMAW Process Parameters to Improve the Length of Penetration in EN 10025 S 235 Grade

  • Deshpande, M.U.;Kshirsagar, J.M.;Dharmadhikari, Dr. H.M.
    • Journal of Welding and Joining
    • /
    • 제35권1호
    • /
    • pp.74-78
    • /
    • 2017
  • In auto ancillary fabrication industry, GMAW is a very useful & important welding process and EN10025 S 235 Grade is common material used for manufacturing of two wheeler chassis. This research gives the detail influence of welding process parameters such as welding current, welding voltage, wire speed on the penetration in EN10025 S 235 Grade mild steel material. The experimentation of this research has been carried out by using three factors, three level Taguchi DOE method. To analyze & optimize the welding parameters & characteristics, analysis of variance, L9 orthogonal array & signal to noise ratio are used. Length of Penetration in addition to the depth of penetration is major concern in fillet welded joints, as the penetration decides the strength of the welded joint. After analysis of penetration in all 9 welded samples, optimize parameters readings verified & found probability value within 0.05.From this research it is come to know that welding current & welding voltage is major parameters which affects the penetration in welded joints.

핀이 부착된 와이어형 방전극의 형상에 따른 코로나 방전특성에 대한 연구 (Experimental Study on the Corona Discharge Characteristics of the Pin-plate Electrode Geometries)

  • 정성일;이재근;정동규;안영철
    • 대한기계학회논문집B
    • /
    • 제30권2호
    • /
    • pp.95-100
    • /
    • 2006
  • Electrostatic precipitators(EPs) have low pressure drop and high dust collection efficiency and are widely used for industrial dust collectors. The current-voltage characteristics, which are important to maintain high dust collection efficiency, depend on several factor: discharge electrode shape, gas flow property, dust loading etc. In this study, experiments are performed to investigate the current-voltage characteristics of the corona discharge of various electrode geometries and an empirical model is proposed to predict current-voltage characteristics of the corona discharge. The corona onset voltage correction coefficient$(\alpha)$ and the geometry correction coefficient$(k_g)$ are used to the conventional equation for wire-plate type discharge electrode. The corona onset voltages are -6.3kV and almost constant when the numbers of discharge pins are varied from 3 to 9. The length of discharge pins has very sensitive effects on the corona onset voltage. They are increased from -6.3 to -7.8kV when the discharge pin length are 8.5 and 4.5mm, respectively. The empirical model shows good agreement with experimental results and can predict the effects of discharge pin length and number.

정(正)4각(角)덕트 입구영역(入口領域)에서 천이(遷移) 진동유동(振動流動)의 입구(入口)길이와 속도분포(速度分布) (Velocity Profiles and Entrance Length of Transitional Oscillatory Flows in the Entrance Region of a Square Duct)

  • 최주호;최병민;유영태
    • Journal of Biosystems Engineering
    • /
    • 제18권3호
    • /
    • pp.275-287
    • /
    • 1993
  • The flow characteristics of the transitional oscillatory flows are investigated analytically and experimentally in the entrance region of a square duct. The systems of conservation equations are analytically solved by linearizing the non-linear convective terms for the developing transitional oscillatory flows in a square duct. The analytical solutions are obtained in the form of infinite series for the velocity profiles. The experimental study for the air flow in a square duct is carried out to measure the velocity profiles and waveforms by using a hot-wire anemometer with the data acquisition and processing systems. The theoretical and experimental results provide the major characteristics of the developing transitional oscillatory flows, such as velocity profiles, velocity waveforms, and entrance length. The velocity profiles in the decelerating phase are larger than those in the accelerating phase for the developing transitional oscillatory flows. The correlations of the entrance length of the transitional oscillatory flows in a square duct are found to be $Le/Dh=K{\cdot}Re_{os}/2({\omega}^+)^2$, where K is 1.23 of an experimental constant.

  • PDF

케이블 컨듀잇 굽힘 센서의 선형 특성 분석 및 켈리브레이션 (Linearity Analysis and Calibration of a Cable-Conduit Bend Sensor)

  • 정우석;조규진
    • 로봇학회논문지
    • /
    • 제12권1호
    • /
    • pp.26-32
    • /
    • 2017
  • Previous shape sensors including bend sensors and optic fiber based sensors are widely used in various applications including goniometer and surgical robots. But theses sensors have large nonlinearity, limited in the range of sensing curvature, and sometimes are expensive. This study suggests a new concept of bend sensor using cable-conduit which consists of the outer sheath and the inner wire. The outer sheath is made of helical coil whose length of the central line changes as the sheath bends. This length change of the central line can be measured with the length change of the inner cable. The modeling and the experimental results show that the output signal of the proposed sensor is linearly related with the bend angle of the sheath with root mean square error of 5.3% of $450^{\circ}$ sensing range. Also the polynomial calibration of the sensor can decrease the root mean square error to 2.1% of the full sensing range.

Adaptive length SMA pendulum smart tuned mass damper performance in the presence of real time primary system stiffness change

  • Contreras, Michael T.;Pasala, Dharma Theja Reddy;Nagarajaiah, Satish
    • Smart Structures and Systems
    • /
    • 제13권2호
    • /
    • pp.219-233
    • /
    • 2014
  • In a companion paper, Pasala and Nagarajaiah analytically and experimentally validate the Adaptive Length Pendulum Smart Tuned Mass Damper (ALP-STMD) on a primary structure (2 story steel structure) whose frequencies are time invariant (Pasala and Nagarajaiah 2012). In this paper, the ALP-STMD effectiveness on a primary structure whose frequencies are time varying is studied experimentally. This study experimentally validates the ability of an ALP-STMD to adequately control a structural system in the presence of real time changes in primary stiffness that are detected by a real time observer based system identification. The experiments implement the newly developed Adaptive Length Pendulum Smart Tuned Mass Damper (ALP-STMD) which was first introduced and developed by Nagarajaiah (2009), Nagarajaiah and Pasala (2010) and Nagarajaiah et al. (2010). The ALP-STMD employs a mass pendulum of variable length which can be tuned in real time to the parameters of the system using sensor feedback. The tuning action is made possible by applying a current to a shape memory alloy wire changing the effective length that supports the damper mass assembly in real time. Once a stiffness change in the structural system is detected by an open loop observer, the ALP-STMD is re-tuned to the modified system parameters which successfully reduce the response of the primary system. Significant performance improvement is illustrated for the stiffness modified system, which undergoes the re-tuning adaptation, when compared to the stiffness modified system without adaptive re-tuning.

발열량 측정장치 개발에 관한 연구 (An Experimental Study on the Developement of Bomb Calorimeter)

  • 김형만;손영목;이동제
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.60-65
    • /
    • 2001
  • Bomb calorimeter was developed for measuring the calorific value of combustible matter such as wastes. The calorimeter consist of bomb, stirred-water type bucket, thermometer and ignition circuit. Operation and performance of the calorimeter have been tested experimentally. In the present study, calorific values of light oil, lamp oil and bunker C oil is measured using the bomb calorimeter. Mass of the sample is fixed at lg, and oxygen pressure in the bomb is used as an experimental parameter. Sample in the oxygen bomb is burned with electrically heated Ni-Cr wire of 100mm in length, and temperature of water in the bucket become increased by $5^{\circ}C$ during about 30min. Calorific value of the sample is calculated with the temperature difference of water. Combustion tests, such as the record of temperature history and the inspection of remnants, are performed at 4, 6, 8 and 10 atm of the oxygen pressure. From the test results, oxygen pressure in the bomb must be over 10atm for complete combustion.

  • PDF

핀치이론의 수정 모델을 이용한 스프레이 모드의 해석 (Analysis of Spray Mode Using Modified Pinch Instability Theory)

  • 박아영;;김선락;유중돈
    • Journal of Welding and Joining
    • /
    • 제27권5호
    • /
    • pp.88-93
    • /
    • 2009
  • While the pinch instability theory (PIT) has been widely employed to analyze the spray transfer mode in the gas metal arc welding (GMAW), it cannot predict the detaching drop size accurately. The PIT is modified in this work to increase the accuracy of prediction and to simulate the molten tip geometry to be more physically acceptable. Since the molten tip becomes a cone shape in the spray mode, the effective wire diameter is formulated that the effective diameter is inversely proportional to current square. Modifications are also made to consider the finite length of the liquid column and current leakage through the arc. While the effective diameter influences drop transfer significantly, the current leakage has negligible effects. The effects of modifications on drop transfer are analyzed, and the predicted drop diameters show good agreements with the experimental data of the steel wire.