• Title/Summary/Keyword: wiper

Search Result 80, Processing Time 0.024 seconds

Measuring Angular Speed and Angular Acceleration for Automotive Windshield Wiper Pivot (자동차 와이퍼 피봇의 각속도 및 각가속도 측정)

  • Lee Byoungsoo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.58-65
    • /
    • 2005
  • A method measuring angular speed and estimating angular acceleration of an automotive wind shield wiper pivot with limited resources has been proposed. Limited resources refer to the fact that processes cannot be operated in real-time with a regular notebook running a Microsoft Windows. Also, they refer to the fact that data acquisition cards have only two general purpose counters as many generic cards do. An optical incremental encoder has been employed for measuring angular motion. To measure the angular speed of the pivot, periods for the encoder's output pulses have been measured as the speed is related to the reciprocal of the period. Since only information acquired from one counter channel is the magnitude of the angular speed, sign correction is necessary. Also the information for the exact time when a pivot passes left and right dead points is also missing and the situation is inherent to the hardware setup. To find out the zero-crossing time of the angular speed, a linear interpolation technique has been employed. Lastly, to overcome the imperfection of the mechanical encoders, the angular speed has been curve fitted to a spline. Angular acceleration can be obtained by a differentiation of the angular speed.

A study on A-pillar & wiper wind noise estimation using response surface methodology at design stage (반응면 기법을 이용한 A필라/와이퍼 풍절음 예측 연구)

  • Rim, Sungnam;Shin, Seongryong;Shin, Hyunsu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.5
    • /
    • pp.292-299
    • /
    • 2018
  • The vehicle exterior design is the main parameter of aerodynamic wind noise, but the modification of it is nearly impossible at a proto-type stage. Therefore, it is very important to verify exterior design and estimate the correct wind noise level at the early vehicle design stages. The numerical simulations of aerodynamic wind noises around A-pillar and wiper were developed for specific vehicle exterior designs, but could not be directly used for the discussions with designers because these need complex modeling and simulation process. This study proposes new approach to A-pillar and wiper wind noise estimation at design stage using response surface methodology of modeFRONTIER, of which database is composed of PowerFLOW simulation, PowerCLAY modeling, SEA-Baced (Statistical Energy Analysis-Based) interior noise simulation, and turbulent acoustic power simulation. New design parameters are defined and their contributions are analyzed. A state-of-the-art, easy and reliable CAT (Computer Aided Test) tool for A-pillar and wiper wind noise are acquired from this study, which shows high usefulness in car development.

Detection of The Real-time Weather Information from a Vehicle Black Box (차량용 블랙박스 영상에서의 실시간 기상정보 검지)

  • Kang, Ju-mi;Lee, Jaesung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.320-323
    • /
    • 2014
  • Today is going with the advancement of intelligent transportation systems and traffic environment and helping to provide safe and convenient service through a mobile device work with the popularization of the vehicle black box. The traffic flow by a variety of causes is constantly changing, it is often unable to prepare the driver, depending on external factors can not be controlled by the power of the public, leading to a major accident. The system needs to pass the real-time weather data in the inter-operator to prevent this. The proposed detection algorithm weather information delivered real-time weather information for this paper. The weather condition is detected by using the contrast between the histogram of the motion of the wiper and the clear day algorithm. In general, the wiper is worked in extreme weather conditions that will have a value different contrast due to rain or snow. Situation was considered clear, snowy conditions, such as using it on a rainy situation. First, designated as ROI (Region Of Interest) of the minimum area that can be detected in order to reduce the amount of calculation for the wiper, the wiper, which was detected through the operation of the threshold Thresholding the brightness of the vehicle wiper. In addition, we distinguish the value of each meteorological situation by using contrast. Results was obtained to 80% for the snow conditions, a rainy situation.

  • PDF

A Study on an Extended Knowledge Model and a Management System of an Intelligent CAD System using UG/KF (UG/KF를 이용한 지능형 CAD 시스템의 지식 확장 및 지식 관리에 관한 연구)

  • Bae I.J.;Lee S.H.;Chun H.J.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.1
    • /
    • pp.49-60
    • /
    • 2005
  • Existing CAD systems have configured geometry data and it is necessary to extend the configured geometry into a knowledge-based system. An intelligent CAD system emerged to provide such a knowledge-based system. However the intelligent CAD system has a limited product model to represent various knowledge models. This paper presents a model, called extended intelligent CAD model, which can extend the product model of the intelligent CAD system into further detailed knowledge model. The extended intelligent CAD model includes a whole design process knowledge and an efficiency of the model has been verified via a knowledge based wiper design system. The model can improve the functionality and efficiency of the existing CAD systems.

A Study of Innovation and Internationalization Strategies by a Hidden Champion Firm in Korea: The Case of CAP Corporation

  • SAMSON, Kouame Kouakou;LEE, Youngwoo
    • Fourth Industrial Review
    • /
    • v.1 no.1
    • /
    • pp.1-10
    • /
    • 2021
  • Purpose - This case study analyzes the internationalization strategy and innovation strategy as key factors contributing to the business success of CAP, a small and medium-sized manufacturing company in Korea producing auto parts such as wipers. This study describes the diversification strategies conducted by CAP Corporation and highlights the company's core competencies that have largely contributed to their global competitive success. Research design, data, and methodology - This paper provides in-depth case study on how CAP was able to grow into a hidden champion company, focusing on their strategies since its establishment. In particular, by analyzing the success factors centering on CAP's aggressive innovation strategy and internationalization strategy, it presents guidelines for small and medium-sized enterprises in Asian countries to become a Hidden Champion company. Result - CAP's product technology has successfully established innovative system on their product called 'vertebra spring' to distribute uniform pressure to the rubber to ensure performance as well as durability of their products. In order to continue benefiting from utilizing core competence and to continue pursuing technological advancement in the wiper industry, CAP has launched a wide range of products (flat blade, conventional blade, hybrid blade) applicable to 95% of the vehicle in the market. Conclusion - Taken together, CAP has many aspects of a hidden champion company by investing in R&D up to 8% of its annual sales to R&D investment even during the crises situation. This number is about 3.36 times higher than the average ratio of listed companies in Korea. Furthermore, the leadership of the management team as well as their vision toward the global market and strong commitment to innovation enabled CAP to become the world's fifth-largest wiper and Asia's No. 1 wiper manufacturer.

Development of Rainfall Information Production Technology Using Optical Sensors (Estimation of Real-Time Rainfall Information Using Optima Rainfall Intensity Technique) (광학센서를 이용한 강우정보 생산기법 개발 (최적 강우강도 기법을 이용한 실시간 강우정보 산정))

  • Lee, Byung-Hyun;Kim, Byung-Sik;Lee, Young-Mi;Oh, Cheong-Hyeon;Choi, Jung-Ryel;Jun, Weon-Hyouk
    • Journal of Environmental Science International
    • /
    • v.30 no.12
    • /
    • pp.1101-1111
    • /
    • 2021
  • In this study, among the W-S-R(Wiper-Signal-Rainfall) relationship methods used to produce sensor-based rain information in real time, we sought to produce actual rainfall information by applying machine learning techniques to account for the effects of wiper operation. To this end, we used the gradient descent and threshold map methods for pre-processing the cumulative value of the difference before and after wiper operation by utilizing four sensitive channels for optical sensors which collected rain sensor data produced by five rain conditions in indoor artificial rainfall experiments. These methods produced rainfall information by calculating the average value of the threshold according to the rainfall conditions and channels, creating a threshold map corresponding to the 4 (channel) × 5 (considering rainfall information) grid and applying Optima Rainfall Intensity among the big data processing techniques. To verify these proposed results, the application was evaluated by comparing rainfall observations.

Application of Time-Frequency Analysis as a Tool for Noise Quality Control of DC Motor Systems (DC 모터계의 소음 품질관리를 위한 시간-주파수 분석의 적용)

  • 임상규;최창환
    • Journal of KSNVE
    • /
    • v.9 no.4
    • /
    • pp.841-848
    • /
    • 1999
  • In the quality assurance check process of DC motor systems, even though the overall sound pressure level is acceptable, there is an incident that subjective evaluation leads to failure in product quality due to annoying noise. This kind of problem may be originated from the manufacturing or assembly process. In this paper, the transient spectral analysis, or the time-frequency analysis is applied to the noise quality problem. For the case study, the cause of annoying noise in the wind shield wiper motor is experimentally analyzed in detail. It is concluded that the defect in the shaft causes the impact noise which is not detectable by steady spectral analysis. Also demonstrated is how the time-frequency analysis is effectively applied to the annoying noise identification of the rotor-gear system.

  • PDF