• Title/Summary/Keyword: winter wheat

Search Result 174, Processing Time 0.02 seconds

Studies on the seeding systems and varieties adapted to mechanization in barley and wheat culture (맥류 기계화 적응재배 양식과 적응품종의 생태에 관한 연구)

  • Jae-Young Cho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.8 no.1
    • /
    • pp.17-29
    • /
    • 1970
  • To research the seeding systems and the varieties adapted to mechanization in barley and wheat culture in Korea, the studies were carried out from October, 1969 to June, 1970 at Suwon. In these studies, six kinds of seeding systems of drilling and dibbling that seems to adapted to mechanization were tested as compared with the customary seeding system, furrowing moderately or widely, using three varieties of barley, Suwon #18, Barsoy and Buhufng, and three varieties of wheat, Wonkwang, Yucseung #3 and Yeungkwang, under the two fertilizer levels of standard and double. The summarize results gained were as follows; 1. Buhung seemed to be the most suitable variety in barley as it yielded the most and matured early and grew the safest. Barsoy suffered from winter injury. 2. Yeungkwang seemed to be the most suitable variety in wheat as it yielded the most and produced the largest grain ani grew the safest, however it matured late. Wonkwang suffered heavily from lodging injury. 3. More yield were produced and there were no increase of cultural dangers except lodging in double fertilizer level. 4. Seeding system of drilling and dibbling seems to be able to put in practice safely under the double fertilizer level when lodging resistant varieties are selected. 5. Rate of yields increase in comparison with the customary seeding system of moderate furrowing were 16 percent in drilling of 20 centimeter spacing, 13 percent in wide furrowing and 12 percent in dibbling of 20 ${\times}$ 12 centimeter spacing in barley and also 9 percent in wide furrowing, 8 percent in dibbling of 20 ${\times}$ 12 centimeter spacing and 7 percent in drilling of 20 centimeter spacing in wheat. 6. The most important cause of above yields increase seems to be the increase of spike number per unit area. 7. Yields increase by drilling as compared with furrowing was not caused by higher rate of seeding. 8. The plants matured a bit earlier by drilling and dibbling. 9. Better stands of seedling were fount in dibbling due to the promotion of germination by tramping. 10. An increase of yields will be expected by decreasing the spacing in drilling and dibbling.

  • PDF

Wheat Varietal Differences of Crown Depth under Different Seeding Depth. (소맥의 파종심도에 따른 관부위치의 품종간 차이)

  • Cho, C.H.;Maeng, D.J.;Park, C.H.;Kim, B.W.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.23 no.2
    • /
    • pp.76-82
    • /
    • 1978
  • This experiment was carried out to select adaptable winter wheat varieties to deep seeding for developing early maturing, cold tolerant, and high yielding varieties. Varieties adaptable to deep seeding had deep crown and cold tolerant or early maturing characteristics. Varieties which had deep crown at 6cm seeding depth were Namkwang, Wonkwang, Suweon #202, Milyang #5, Milyang #7, Kitagamigomugi, Norin # 4, J ukoku # 81, Sage, Blueboy, Expection, Oasis, C.I. 14034, Rossalka, Benhur, Biserka, Martonvasar-1, and Martonvasar-2.

  • PDF

A New White Wheat Variety, "Jeokjoong" with High Yield, Good Noodle Quality and Moderate to Scab (백립계 다수성 붉은곰팡이병 중도저항성 제면용 밀 신품종 "적중밀")

  • Park, Chlul Soo;Heo, Hwa-Young;Kang, Moon-Suk;Lee, Chun-Kee;Park, Kwang-Geun;Park, Jong-Chul;Kim, Hong-Sik;Kim, Hag-Sin;Hwang, Jong-Jin;Cheong, Young-Keun;Kim, Jung-Gon
    • Korean Journal of Breeding Science
    • /
    • v.40 no.3
    • /
    • pp.308-313
    • /
    • 2008
  • "Jeokjoong", a white winter wheat (Triticum aestivum L.) variety was developed from the cross "Keumkang"/"Tapdong". "Jeokjoong" is an awned, semi-dwarf and soft white winter wheat, similar to "Keumkang" (check variety). The heading and maturing date of "Jeokjoong" were similar to "Keumkang". Culm and spike length of "Jeokjoong" were 78 cm and 7.5 cm, similar to "Keumkang". "Jeokjoong" had lower test weight (800 g) and lower 1,000-grain weight (40.1 g) than "Keumkang" (811 g and 44.0 g, respectively). It had resistance to winter hardiness, wet-soil tolerance and lodging tolerance. "Jeokjoong" showed moderate to scab in test of specific character although "Keumkang" is susceptible to scab. "Jeokjoong" had lower flour yield (69.2%) and ash content (0.36%) than "Keumkang" (72.0% and 0.41%, respectively) and similar flour color to "Keumkang". It showed lower protein content (8.9%) and SDS-sedimentation volume (36.8 ml) and shorter mixograph mixing time (3.5 min) than "Keumkang" (11.0%, 59.7 ml and 4.5 min, respectively). Amylose content and pasting properties of "Jeokjoong" were similar to "Keumkang". "Jeokjoong" had softer and more elastic texture of cooked noodles than "Keumkang". Average yield of "Jeokjoong" in the regional adaptation yield trial was 6.19 MT ha-1 in upland and 5.33 MT/ha in paddy field, which was 19% and 16% higher than those of "Keumkang" (5.21 MT/ha and 4.58 MT/ha, respectively). "Jeokjoong" would be suitable for the area above the daily minimum temperature of $-10^{\circ}C$ in January in Korean peninsula.

A New White Wheat Variety, "Baegjoong" with High Yield, Good Noodle Quality and Moderate to Pre-harvest Sprouting (백립계 다수성 수발아 중도저항성 제면용 밀 신품종 "백중밀")

  • Park, Chul Soo;Heo, Hwa-Young;Kang, Moon-Suk;Lee, Chun-Kee;Park, Kwang-Geun;Park, Jong-Chul;Kim, Hong-Sik;Kim, Hag-Sin;Hwang, Jong-Jin;Cheong, Young-Keun;Kim, Jung-Gon
    • Korean Journal of Breeding Science
    • /
    • v.40 no.2
    • /
    • pp.153-158
    • /
    • 2008
  • "Baegjoong", a white winter wheat (Triticum aestivum L.) cultivar was developed by the National Institute of Crop Science, RDA. It was derived from the cross "Keumkang"/"Olgeuru" during 1996. "Baegjoong" was evaluated as "Iksan307" in Advanced Yield Trial Test in 2004. It was tested in the regional yield trial test between 2005 and 2007. "Baegjoong" is an awned, semi-dwarf and soft white winter wheat, similar to "Keumkang" (check cultivar). The heading and maturing date of "Baegjoong" were similar to "Keumkang". Culm and spike length of "Baegjoong" were 77 cm and 7.5 cm, similar to "Keumkang". "Baegjoong" had lower test weight (802 g) and lower 1,000-grain weight (39.8 g) than "Keumkang" (811 g and 44.0 g, respectively). It had resistance to winter hardiness, wet-soil tolerance and lodging tolerance. "Baegjoong" showed moderate to pre-harvest sprouting (23.9%) although "Keumkang" is susceptible to pre-harvest sprouting (38.9%). "Baegjoong" had similar flour yield (72.4%) and ash content (0.41%) to "Keumkang" (72.0% and 0.41%, respectively) and similar flour color to "Keumkang". It showed lower protein content (8.8%) and SDS-sedimentation volume (35.3 ml) and shorter mixograph mixing time (3.8 min) than "Keumkang" (11.0%, 59.7 ml and 4.5 min, respectively). Amylose content and pasting properties of "Baegjoong" were similar to "Keumkang". "Baegjoong" had softer and more elastic texture of cooked noodles than "Keumkang". Average yield of "Baegjoong" in the regional adaptation yield trial was $5.88\;MT\;ha^{-1}$ in upland and 5.35 MT ha-1 in paddy field, which was 13% and 17% higher than those of "Keumkang" ($5.21\;MT\;ha^{-1}$ and $4.58\;MT\;ha^{-1}$, respectively). "Baegjoong" would be suitable for the area above the daily minimum temperature of $-10^{\circ}C$ in January in Korean peninsula.

Studies on the Procedures of Accelerating Generation Advancement in Wheat and Barley Breeding IV. Advancement of Two Generations of Wheat Materials a Year at Suweon by Growing a Summer Generation (맥류의 세대촉진방법에 관한 연구 IV. 수원지역에서 소맥 1년 2기작 세대촉진재배)

  • Seong, B.Y.;Cho, C.H.;Park, M.W.;Hong, B.H.;Ahn, W.S.;Nam, J.H.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.25 no.4
    • /
    • pp.35-42
    • /
    • 1980
  • To establish a generation acceleration technique, two crops a year at field condition of Suweon, 10 varieties different in their spring growth habit were tested with 6 different seeding time after harvesting. These materials were harvested on June 10, 19, 79 and tested for their seed production ability at varions seeding time from July I I to August 15 with a week interval. An immatured seed germination technique and green vernalization methods were applied in cycling generations and the results obtained were summarized as follows. 1. In summer growing, seedlings establishment after transplanting was better in earlier transplanting. 2. Heading time was remarkably enhanced by earlier transplanting. Considering the results of two years early or mid of July was the suitable time to plant the second summer crop. 3. Those varieties of spring growth habit expressed little variations in plant height among the varieties. In 1978 which is referred as warm year produced plant height as tall as 8-16cm and poor crop but produced good crop with 25-65cm plant height in 1979. 4. No definit tendency in the length of spike was. observed among the cultivars but longer spike was found in winter wheat compared to the spring. 5. Number of spikes per plant was ranged from 1 to 3 regardless the transplanting time in 1979. However, more spikes per plant were produced in early or mid of July transplanting and those varieties of higher growth habit than V did not produces any spikes. 6. Higher number of grains per spike was found at earlier transplanted varieties. Therefore, it is concluded that those materials of I-IV growth habit with mid or early July transplanting would be suitable in practical sense considering their ability of seed production. 7. Two-year results indicated that wheat crop can not tolerate the temperature level higher than average 32$^{\circ}C$ C at Suweon. In this regard, the cultivation schedule was established assuming average temperature condition like the year of 1979 which was possible to grow wheats.

  • PDF

Nature of a Root-Associated Paenibacillus polymyxa from Field-Grown Winter Barley in Korea

  • RYU CHOONG-MIN;KIM JINWOO;CHOI OKHEE;PARK SOO-YOUNG;PARK SEUNG-HWAN;PARK CHANG-SEUK
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.984-991
    • /
    • 2005
  • Soil or seed applications of plant growth-promoting rhizobacteria (PGPR) have been used to enhance growth of several crops as well as to suppress the growth of plant pathogens. In this study, we selected a PGPR strain, Paenibacillus polymyxa strain E681, out of 3,197 heat-stable bacterial isolates from winter wheat and barley roots. Strain E681 inhibited growth of a broad spectrum plant pathogenic fungi in vitro, and treatment of cucumber seed with E681 reduced incidence of damping-off disease caused by Pythium ultimum, Rhizoctonia solani, or Fusarium oxysporum. When inoculated onto seeds as vegetative cells or as endospores, E681 colonized whole cucumber root systems and root tips. Different temperatures such as $20^{\circ}C\;and\;30^{\circ}C$ did not affect root colonization by strain E681. This colonization was associated with a consistent increase in foliar growth of cucumber in the greenhouse. These results indicate that strain E681 is a promising PGPR strain for application to agricultural systems, particularly during the winter season.

Forage and TDN Yield of Several Winter Crops at Different Clipping Date (사료용 맥류 품종의 예취 시기별 청예 및 건물수량과 영양가 비교)

  • Hwang, Jong-Jin;Sung, Byung-Ryeol;Youn, Kyu-Bok;Ahn, Wan-Sik;Lee, Jong-Ho;Chung, Kyu-Yong;Kim, Young-Sang
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.30 no.3
    • /
    • pp.301-309
    • /
    • 1985
  • This experiment was conducted to know a substantial body of information about the differences of the important forage characteristics; green fodder yield, dry matter yield, TDN%, TDN yield and so forth of the seven cultivars selected as the forage crops (Rye, Triticale, Wheat and Barley) depending on the specific times of cutting stage, on the Wheat and Barley Research Institute from October, 1983 to June, 1984, and the results summarized as follows. Green fodder yield & dry matter weight, when clipped at 20, 30 April and 10 May, of varieties Homil #2 showed the most yielding capacity, but when clipped at 20 May, Suweon#8 (triticale) showed the most green fodder yield whereas Homil #1 the most significant dry matter weight. Plant height, in the cases of Paldanghomil, Homil #1 & Homil #2, showed distinctly longer than that of Bunong, Suweon #8 & Suweon #9 and continued to grow even after the heading date. Dry matter ratio increased with time (Dry matter yield/green fodder yield x100). TDN % decreased but TDN yield increased with time but Homil #1, Homil #2 and Paldanghomil showed relatively the higher values. In the elements of nutrient of cell wall, Suweon #8 & Bungong among 7 cultivars have good quality. The reasonable clipping date of wheat &barley as green fodder crops are 10 May to 20 May, but if clipped before 10 May and 20 May, Homil #2 and Suweon #8 became the promising forage crops, respectively.

  • PDF

Studies on Grain Filling and Quality Changes of Hard and Soft Wheat Grown under the Different Environmental Conditions (환경 변동에 따른 경ㆍ연질 소맥의 등숙 및 품질의 변화에 관한 연구)

  • Young-Soo Han
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.17
    • /
    • pp.1-44
    • /
    • 1974
  • These studies were made at Suwon in 1972 and at Suwon, Iri, and Kwangju in 1973 to investigate grain filling process and variation of grain quality of NB 68513 and Caprock as hard red winter wheat, Suke #169 as soft red winter wheat variety and Yungkwang as semi-hard winter variety, grown under-three different fertilizer levels and seeding dates. Other experiments were conducted to find the effects of temperature, humidity and light intensity on the grain filling process and grain quality of Yungkwang and NB 68513 wheat varieties. These, experiments were conducted at Suwon in 1973 and 1974. 1. Grain filling process of wheat cultivars: 1) The frequency distribution of a grain weight shows that wider distribution of grain weight was associated with large grain groups rather than small grain group. In the large grain groups, the frequency was mostly concentrated near mean value, while the frequency was dispersed over the values in the small grain group. 2) The grain weight was more affected by the grain thickness and width than by grain length. 3) The grain weight during the ripening period was rapidly increased from 14 days after flowering to 35 days in Yungkwang and from 14 days after flowering to 28 days in NB 68513. The large grain group, Yungkwang was rather slowly increased and took a longer period in increase of endosperm ratio of grain than the small grain group, NB 68513. 4) In general, the 1, 000 grain weight was reduced under high temperature, low humidity, while it was increased under low temperature and high humidity condition, and under high temperature and humidity condition. The effect of shading on grain weight was greater in high temperature than in low temperature condition and no definite tendency was found in high humidity condition. 5) The effects of temperature, humidity and shading on 1, 000 grain weight were greater in large-grain group, Yungkwang than in small grain group, NB 68513. Highly significant positive correlation was found between 1, 000 grain weight and days to ripening. 6) The 1, 000 grain weight and test weight were increased more or less as the fertilizer levels applied were increased. However, the rate of increasing 1, 000 grain weight was low when fertilizer levels were increased from standard to double. The 1, 000 grain weight was high when planted early. Such tendency was greater in Suwon than in Kwangju or Iri area. 2. Milling quality: 7) The milling rate in a same group of varieties was higher under the condition of low temperature, high humidity and early maturing culture which were responsible for increasing 1, 000 grain weight. No definite relations were found along with locations. 8) In the varieties tested, the higher milling rate was found in large grain variety, Yungkwang, and the lowest milling rate was obtained from Suke # 169, the small grain variety. But the small grained hard wheat variety such as Caprock and NB 68513 showed higher milling rate compared with the soft wheat variety, Suke # 169. 9) There were no great differences of ash content due to location, fertilizer level and seeding date while remarkable differences due to variety were found. The ash content was high in the hard wheat varieties such as NB 68513, Caprock and low in soft wheat varieties such as Yungkwang and Suke # 169. 3. Protein content: 10) The protein content was increased under the condition of high temperature, low humidity and shading, which were responsible for reduction of 1, 000 grain weight. The varietal differences of protein content due to high temperature, low humidity and shading conditions were greater in Yungkwang than in NB 68513. 11) The high content of protein in grain within one to two weeks after flowering might be due to the high ratio of pericarp and embryo to endosperm. As grains ripen, the effects of embryo and pericarp on protein content were decreased, reducing protein content. However, the protein content was getting increased from three or four weeks after flowering, and maximized at seven weeks after flowering. The protein content of grain at three to four weeks after flowering increased as the increase of 1, 000 grain weight. But the protein content of matured grain appeared to be affected by daily temperature on calender rather than by duration of ripening period. 12) Highly significant positive correlation value was found between the grain protein content and flour protein content. 13) The protein content was increased under the high level of fertilizers and late seeding. The local differences of protein content were greater in Suwon than in Kwangju and Iri. 14) Protein content in the varieties tested were high in Yungkwang, NB 68513 and Caprock, and low in Suke # 169. However, variation in protein content due to the cultural methods was low in Suke # 169. 15) Protein yield per unit area was increased in accordance with increase of fertilizer levels and early maturing culture. However, nitrogen fertilizer was utilized rather effectively in early maturing culture and Yungkwang was the highest in protein yield per unit area. 4. Physio-chemical properties of wheat flour: 16) Sedimentation value was higher under the conditions of high temperature, low humidity and high levels of fertilizers than under the conditions of low temperature, high moisture and low levels of fertilizers. Such differences of sedimentation values were more apparent in NB 68513 and Caprock than Yungkwang and Suke # 169. The local difference of sedimentation value was greater in Suwon than in Kwangju and Iri. Even though the sedimentation value was highly correlated with protein content of grain, the high humidity was considered one of the factors affecting sedimentation value. 17) Changes of Pelshenke values due to the differences of cultural practices and locations were generally coincident with sedimentation values. 18) The mixing time required for mixogram was four to six minutes in NB 68513, five to seven minutes in Cap rock. The great variation of mixing time for Yungkwang and Suke # 169 due to location and planting conditions was found. The mixing height and area were high in hard wheat than in soft wheat. Variation of protein content due to cultural methods were inconsistent. However, the pattern of mixogram were very much same regardless the treatments applied. With this regard, it could be concluded that the mixogram is a kind of method expressing the specific character of the variety. 19) Even though the milling property of NB 68513 and Caprock was deteriorated under either high temperature and low humidity of high fertilizer levels and late seeding conditions, baking quality was better due to improved physio-chemical properties of flour. In contrast, early maturing culture deteriorated physio-chemical properties, milling property of grain and grain protein yield per unit area was increased. However, it might be concluded that the hard wheat production of NB 68513 and Caprock for baking purpose could be done better in Suwon than in Iri or Kwangju area. 5. Interrelationships between the physio-chemical characters of wheat flour: 20) Physio-chemical properties of flour didn't have direct relationship with milling rate and ash content. Low grain weight produced high protein content and better physio-chemical flour properties. 21) In hard wheat varieties like NB 68513 and Caprock, protein content was significantly correlated with sedimentation value, Pelshenke value and mixing height. However, gluten strength and baking quality were improved by the increased protein content. In Yungkwang and Suk # 169, protein content was correlated with sedimentation value, but no correlations were found with Pelshenke value and mixing height. Consequently, increase of protein content didn't improve the gluten strength in soft wheat. 22) The highly significant relationships between protein content and gluten strength and sedimentation . value, and between Pelshenke value, mixogram and gluten strength indicated that the determination of mixogram and Pelshenke value are useful for de terming soft and hard type of varieties. Determination of sedimentation value is considered useful method for quality evaluation of wheat grain under different cultural practices.

  • PDF

The Effect of Heat Treatment on Fried Noodle Making (밀의 열처리가 라면 제조과정 및 물성에 미치는 영향)

  • Wan Soo Kim
    • Korean journal of food and cookery science
    • /
    • v.9 no.1
    • /
    • pp.14-18
    • /
    • 1993
  • $95^{\circ}C$에서 열처리한 밀가루(Kansas hard white winter wheat flour)로 제조된 라면은 그 제조시 약 38%의 물 흡수율을 보여주었는데 이는 열처리를 안 한 control 밀가루에 비하여 약 4~5% 증가함을 보여주었다. $95^{\circ}C$에서 열처리한 밀가루는 글루텐이 열에 의해 응고되어 대부분 손상되었으며 $\alpha$-amylase의 양이 거의 없는 것으로 나타났다. 한편 라면의 가열 전후를 볼 때, 육안으로 본 라면의 색은 상당히 좋아졌는데, 이는 polyphenol oxidase의 불활성화로 인한 것이며, 조리시간도 많이 단축되었다. 조리 후의 라면의 증가된 무게는 control에 비하여 감소하였고, 조리에 의한 손실은 증가하였는데 이는 열에 의해 글루텐 단백질이 응고되거나 손상을 입어 라면 조직의 텍스쳐가 약해졌기 때문이다. 그러므로 열처리를 한 밀가루로부터 라면을 제조시는, 손상되지 않은 천연의 글루텐(vital gluten)을 첨가하면 국수의 글루텐 단백질과 전분의 결합력을 증가시켜 라면조직을 향상시킬 것으로 보여진다.

  • PDF

Seed Blending Effect on Growth, Yield and Feed Value among Four Winter Cereals for Whole Crop Silage (맥종간 혼파재배시 생육, 조사료 생산성 및 사료가치 비교)

  • Ju, Jung-Il;Lee, Seung-Su;Yoo, Ji-Hong;Lee, Joung-Jun;Park, Ki-Hun;Lee, Hee-Bong
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.28 no.3
    • /
    • pp.203-214
    • /
    • 2008
  • The overwintering crops, barley, wheat, oat and triticale etc, have been received in korea as high-quality roughage for round-baled silage making as livestock feed. Studies were carried out to evaluated the effects of seed blending on growth, yield and feed value between barley and wheat, triticale and oat, respectively. The results are summarized as follows : The barley was declined in the growth and spike's size as affected by sown as mixed seeding with triticale, but not effected with oat. The total fresh yield were increased by grown as mixed seeding with wheat, triticale and oat, but the dry matter yield were not significantly increased because of the low percentage of dry matter and the decrease of barley's growth. The neutral detergent fiber (NDF) and crude protein content were increased by seed blending, but acid detergent fiber (ADF) and digestible dry matter (DDM) content were decreased. The feed value was improved by seed blending of barley and wheat, but not significant at seed blending of triticale and oat. Because of the flourishing tillers, difference of heading date and abundant leaves of oat, the optimum crop for mixed seeding with barley for increment of forage productivity was oat in middle area of korea.