• Title/Summary/Keyword: winter concrete

Search Result 183, Processing Time 0.029 seconds

An Experimental Study on the Early Frost Resistance Properties of High-Strength Concrete in Winter Concreting (동절기 고강도콘크리트의 시공에 있어서 초기동해 방지에 관한 실험적 연구)

  • 권영진
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2001.11a
    • /
    • pp.76-81
    • /
    • 2001
  • Recently, the structure is higher and larger, so that the application of high-strength concrete is increased, And as the development of construction skills, it is possible to place during the winter. Concrete work during winter is indispensible to shorten time of completion and cut costs. When concrete work during winter is placed, it has anxiety that concrete freeze at low temperature. As repetition of concrete's freezing cause reduction of durability, it is necessary for mixing to pay attention to air content and W/C ratios. Accordingly, in this study, we estimate the frost resistance by air content and W/C ratios, and development of strength after early-frost damage in the high-strength concrete during the cold weather. In this study, it could be confirmed that factors which were air content, W/C ratios and early curing period, affected on the frost resistance.

  • PDF

Improvement of Concrete Durability under Deicier and Freez-Thaw Environment (제설제 및 동결융해 환경하에서 콘크리트의 내구성 증진 방안에 관한 연구)

  • Lee, Byung-Duck;Yun, Byung-Sung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.523-526
    • /
    • 2005
  • In order to traffic safety during winter season, snowfall and cold area has been spread the deicing chemicals, and the spraying amount is increasing every year. Use of deicing chemicals has been and will continue to be a major part of highway snow and ice control methods. Chloride-containing chemicals such as calcium chloride or rock salt are main deicers for the road. Extensive use of chloride deicers is, however, the source of substantial cost penalties due to their corrosive action and acceleration to deterioration concrete structures. Deterioration due to de-icer salt occurs in practice in concrete pavement, dike, barrier and similar structure. This paper reports the results of effect of de-icer salt on durability of concrete structure in winter. To protect concrete structure from damage by de-icer salt in winter, the exposure test was performed using three methods such as increase in design strength upto 32MPa application of granulated blast furnace slag powder, and concrete sealer. Of these, the method of increase in design strength upto 32MPa showed better durability for deterioration by de-icer salt.

  • PDF

Durable of Concrete in Snowfall and Cold Regions (적설한랭지역에서 콘크리트의 내구성)

  • Lee, Byung-Duck;Cheong, Hai-Moon;Yun, Byung-Sung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.221-224
    • /
    • 2005
  • In order to traffic safety during winter season, snowfall and cold area has been spread the deicing chemicals, and the spraying amount is increasing every year. Use of deicing chemicals has been and will continue to be a major part of highway snow and ice control methods. Chloride-containing chemicals such as calcium chloride or rock salt are main deicers for the road. Extensive use of chloride deicers is, however, the source of substantial cost penalties due to their corrosive action and acceleration to deterioration concrete structures. Deterioration due to de-icer salt occurs in practice in concrete pavement, dike, barrier and similar structure. This paper reports the results of effect of de-icer salt on durability of concrete structure in winter. To protect concrete structure from damage by de-icer salt in winter, the exposure test was performed using three methods such as increase in design strength upto 35MPa application of granulated blast furnace slag powder, and concrete sealer. Of these, the method of increase in design strength upto 35MPa showed better durability for deterioration by de-icer salt.

  • PDF

Effect of De-icer Salt on the Durability of Concrete Structure in Winter (겨울철 제설제의 살포가 콘크리트 내구성에 미치는 영향)

  • Cheong Haimoon;Lee Byung-Duck
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.814-817
    • /
    • 2004
  • Deterioration due to de-icer salt occurs in practice in concrete pavement, dike, barrier and similar structure. This paper reports the results of effect of de-icer salt on. durability of concrete structure in winter. To protect concrete structure from damage by de-icer salt in winter, the exposure test was performed using three countermeasures such as increase in design strength upto $350kg/cm^2$, application of ggbf slag powder, and concrete sealer. Of these, the method of increase in design strength upto $350kg/cm^2$ showed better durability for deterioration by de-icer salt.

  • PDF

An Experimental Study on the Freezing Temperature of Admixture Agent for Concrete (콘크리트용 혼화제의 동결온도에 관한 실험적 연구)

  • 한경익;이건철;이진규;윤기원;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.48-51
    • /
    • 1996
  • Recently, frost damage of storage tank for admixture agent caused by low temperature in winter and quality deterioration of admixture agent ofen happened. But, many problems are caused because of no applicable regulations of admixture agent facility and so on. Therefore, this study presents the reference data about using and quality control of admixture agent in practice and the judgement data about working out a counter plan of suitable heat insulation of injecion equipment of admixture agent exposed at outside in winter by measuring the freezing point of admixture agent for concrete.

  • PDF

An Experimental Study on the Strength Properties of Concrete for Curing Method at Early Age and kinds of Admixture in Winter (동절기 초기양생방법 및 혼화제 종류에 따른 콘크리트의 강도발현특성에 관한 실험적 연구)

  • 최성우;이민호;반성수;최봉주;유득현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.183-188
    • /
    • 2002
  • When Concrete work during winter is placed, it has anxiety that concrete freeze at low temperature. As concrete's freezing cause reduction of durability, it is necessary for mixing to pay attention to Air content and W/C ratios. Accordingly, in this study, we set up three series and evaluate a frost-resistance of concrete with admixture, like fly-ash and blast-furnace slag, for early curing method and types of chemical admixture..The study is composed as; I series : Analysis for early curing method and types of chemical admixture in laboratory II series : Analysis for early curing method and types of chemical admixture in batcher plant and measured concrete' temperature. The result of this study, it was more effective the use of super-plasticizers than air entraining agent.

  • PDF

A Study on the Improvement of Thermal Curing Performance of Concrete Using Hot Air Blower (열풍기 이용 콘크리트 보온양생 성능 개선 방안 분석)

  • Choi, Ji-Su;Kim, Sang-Yeop;Song, Jin-Hee;Cho, Hong-Beom;Rhee, Kyu-Nam
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.239-240
    • /
    • 2022
  • In winter, low outdoor temperature can casue reduction of concrete strength. Therefore, thermal protection is required when curing concrete in winter to maintain a certain level or higher surface temperature. Accordingly, in domestic construction sites, a curing method in which surrounds casting areas by tents and operates hot air blowers are widely applied. However, local low-temperature areas may occur due to airtightness of the curing tents. If additional heat is supplied to prevent occurrence of local low-temperature areas, energy consumption increases. Therefore in this study, a plan for improvement method of concrete curing was considered and the performance was evaluated through numerical analysis. A plan to improve the airtightness of the wall opening was applied, but the analysis showed that if only a part of the curing area is shielded, the temperature of the unshielded area decreases,making it inappropriate to improve curing performance.

  • PDF

Temperature Characteristics depending on the Changes of Surface-coated Curing Methods by using some bubble sheets during winter (동절기 버블시트 표면피복 양생방법 변화에 따른 철근의 온도특성)

  • Lee, Jea-Hyeon;Kyung, Yeong-Hyeok;Lee, Sang-Un;Lee, Joung-Gyo;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.13-14
    • /
    • 2016
  • In the modern construction industry, since numerous skyscrapers have been built, there have been sought for developing various kinds of methods for shortening a construction period. Therefore, many kinds of studies on some kinds of cold-weather concrete have been conducted actively for the purpose of a year-round construction. Accordingly, this research team once developed a double-layered bubble sheet as a surface-coated curing material for winter. And there have been raised some worries that some initial damages to frozen concrete caused by low temperature of reinforcing bars which are exposed out of the wall areas of a wall-type apartment during winter. Therefore, in this study, it is intended to find out clearly whether it is possible for concrete to be damaged initially or not by analyzing the temperature characteristics of the exposed reinforcing bars of the wall areas under the temperature conditions during winter.

  • PDF

Development and Application of Concrete using Ground Granulated Blast Slag in Winter Season (동절기 슬래그 혼입 콘크리트의 실용화기술개발)

  • Yoo, Jo-Hyeong;Kim, Woo-Jae;Hong, Seok-Beom
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.256-257
    • /
    • 2014
  • Concrete made with ground granulated blast-furnace slag(GGBS) has many advantage, including improved durability, workability and economic benefits. GGBS concrete is that its strength development is considerably slower under standard 20℃ curing conditions than that of portland cement concrete, although the ultimate strength is higher for same water-binder ratio. GGBS is not therefore used in application where high early age strength is required. However, hydration of GGBS is much more sensitive to temperatures, the strength development of GGBS concrete is significantly enhanced.

  • PDF