• Title/Summary/Keyword: wing design

Search Result 517, Processing Time 0.028 seconds

Design.Manufacture on X-wing type flapping vehicle (X-wing type 날개짓 비행체의 설계.개발)

  • Yoon, Kwang-Joon;Park, Joon-Hyuk
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1437-1440
    • /
    • 2008
  • This research describes about designing and manufacturing X-wing type flapping micro aerial vehicle which intends to improve the performance of one-pair wing flapping vehicle with innovated design. This design, X-wing as we call, was introduced for some time ago from many laboratories but still there hasn’t any reports dealing on its theoretical or numerical analysis. By manufacturing the X-wing with our own design and succeeding its flight test will give us the general idea on X-wing which may guide us to conduct the numerical and experimental analysis later on. We focused to design the X-wing and introduce some conceptual theories about its characteristics on this report.

  • PDF

Rotor Performance Optimization of the Canard Rotor Wing Aircraft (Canard Rotor Wing 항공기의 로터 성능 최적화 연구)

  • Jeon, Kwon-Su;Lee, Jae-Woo;Byun, Yung-Hwan;Yu, Yung H.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.2
    • /
    • pp.105-114
    • /
    • 2008
  • In this study, the sizing and performance analysis program is developed for the canard rotor wing(CRW) aircraft which operates in dual modes (fixed wing mode and rotary wing mode). The developed program is verified for both fixed wing and rotary wing modes using the existing aircraft data and the design optimization formulation is made to perform the reconnaissance mission. For the canard rotor wing aircraft optimization , multi-objective function is constructed to consider both the fixed wing mode and rotary wing mode the weighting factor. For six design cases with different weighting factors and different design constraints, the optimization is performed and improved rotor design results are derived.

Rapid Design Method and System Development for Aircraft Wing Structure

  • Tang, Jiapeng;Han, Jing;Luo, Mingqiang
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.1
    • /
    • pp.45-53
    • /
    • 2016
  • This work is mainly done by too many manual operations in the aircraft structure design process resulting in heavy workload, low efficiency and quality, non-standardized processes and procedures. A top-down associated design method employing the template parametric technology is proposed here in order to improve the quality of design and efficiency of aircraft wing structure at the preliminary design stage. The appropriate parametric tool is chosen and the rapid design system of knowledge-driven aircraft wing structure is developed. First, a skeleton model of aircraft wing structure is rapidly built up through the template encapsulated design knowledge. Associated design is then introduced to realize the association between the typical structural part and skeleton model. Finally, the related elements are referenced from skeleton model, and a typical structural part reflecting an automatic response for design changes of the upstream skeleton model is quickly constructed within the template. The rapid design system proposed and developed in this paper is able to formalize the design standardization of aircraft wing structure and thus the rapid generation of different aircraft wing structure programs and achieve the structural design knowledge reuse as well.

Light Wing Spar Design for High Altitude Long Endurance UAV (고고도 장기체공무인기 경량 주익 스파 설계)

  • Shin, Jeong Woo;Park, Sang Wook;Lee, Mu-Hyoung;Kim, Tae-Uk
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.22 no.2
    • /
    • pp.27-33
    • /
    • 2014
  • There are several methods to improve the flight efficiency of HALE(High Altitude Long Endurance) UAV(Unmaned Aerial Vehicle). Airframe structural point of view, weight reduction of the airframe structure is the most important method to improve the flight efficiency. In order to reduce the weight of airframe structures, new concepts which are different from traditional airframe structure design such as the mylar wing skin should be introduced. The spar is the most important component in a mylar skin wing structure, so the spar weight reduction is the key point for reduction of the wing structural weight. In this study, design trade-off study for the front spar of the HALE UAV wing is conducted in order to reduce the weight. Design and analysis procedure of high aspect ratio wing spar are introduced. Several front spar structures are designed and trade-off study regarding the weight and strength for the each spar are performed. Spar design configurations are verified by the static strength test. Finally, optimal front spar design is decided and applied to the HALE UAV wing design.

Subscale Main Wing Design and Manufacturing of WIG Vehicle Using Carbon Fiber Composites

  • Park, Hyun-Bum
    • International Journal of Aerospace System Engineering
    • /
    • v.4 no.2
    • /
    • pp.1-4
    • /
    • 2017
  • This work dealt with design and manufacturing of WIG vehicle wing using carbon/epoxy composite materials. In this study, structural design and analysis of carbon composite structure for WIG craft were performed. Firstly, structural design requirement of wing for WIG vehicle was investigated. After structural design, the structural analysis of the wing was performed by the finite element analysis method. It was performed that the stress, displacement and buckling analysis at the applied load condition. And also, manufacturing of subscale wing using carbon/epoxy composite materials was carried out. After structural test of target structure, structural test results were compared with analysis results. Through the structural analysis and test, it was confirmed that the designed wing structure is safety.

A Study on Conceptual Structural Design of Wing for a Small Scale WIG Craft Using Carbon/Epoxy and Foam Sandwich Composite Structure

  • Kong, Chang-Duk;Park, Hyun-Bum;Kang, Kuk-Gin
    • Advanced Composite Materials
    • /
    • v.17 no.4
    • /
    • pp.343-358
    • /
    • 2008
  • This present study provides the structural design and analysis of main wing, horizontal tail and control surface of a small scale WIG (Wing-in-Ground Effect) craft which has been developed as a future high speed maritime transportation system of Korea. Weight saving as well as structural stability could be achieved by using the skin.spar.foam sandwich and carbon/epoxy composite material. Through sequential design modifications and numerical structural analysis using commercial FEM code PATRAN/NASTRAN, the final design structural features to meet the final design goal such as the system target weight, structural safety and stability were obtained. In addition, joint structures such as insert bolts for joining the wing with the fuselage and lugs for joining the control surface to the wing were designed by considering easy assembling as well as more than 20 years service life.

Evaluation on Structural Safety for Carbon-Epoxy Composite Wing and Tail Planes of the 1.2 Ton Class WIG

  • Park, Hyunbum
    • International Journal of Aerospace System Engineering
    • /
    • v.6 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • In the present study, structural safety and stability on the main wing and tail planes of the 1.2 ton WIG(Wing in Ground Effect) flight vehicle, which will be a high speed maritime transportation system for the next generation, was performed. The carbon-epoxy composite material was used in design of wing structure. The skin-spar with skin-stressed structural type was adopted for improvement of lightness and structural stability. As a design procedure for this study, the design load was estimated with maximum flight load. From static strength analysis results using finite element method of the commercial codes. From the stress analysis results of the main wing, it was confirmed that the upper skin structure between the second rib and the third rib was unstable for the buckling load. Therefore in order to solve this problem, three stiffeners at the buckled region were added. After design modification, even though the weight of the wing was a little bit heavier than the target weight, the structural safety and stability was satisfied for design requirements.

Structural Design on Joint Component of Composite Wing of WIG Craft

  • Lee, Younggyu;Park, Hyunbum
    • International Journal of Aerospace System Engineering
    • /
    • v.8 no.2
    • /
    • pp.1-3
    • /
    • 2021
  • This study proposed a specific preliminary structural design procedure of the main wing for a small scale WIG vehicle to meet the target weight of the system requirement. The high stiffness and strength Carbon-Epoxy material was used for lightness, and the foam sandwich type structure at the upper skin and the spar webs was adopted for improvement of structural stability. After structural design, wing joint part was designed. Through investigation on structural design result, design modification was performed. After design modification, even thought the designed wing weight was a little bit heavier than the target wing weight, the structural safety and stability of the final design feature was confirmed.

Wing Design Optimization of a Solar-HALE Aircraft

  • Lim, JaeHoon;Choi, Sun;Shin, SangJoon;Lee, Dong-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.3
    • /
    • pp.219-231
    • /
    • 2014
  • We develop a preliminary design optimization procedure in this paper regarding the wing planform in a solar-powered high-altitude long-endurance unmanned aerial vehicle. A high-aspect-ratio wing has been widely adopted in this type of a vehicle, due to both the high lift-to-drag ratio and lightweight design. In the preliminary design, its characteristics need to be addressed correctly, and analyzed in an appropriate manner. In this paper, we use the three-dimensional Euler equation to analyze the wing aerodynamics. We also use an advanced structural modeling approach based on a geometrically exact one-dimensional beam analysis. Regarding the structural integrity of the wing, we determine detailed configuration parameters, specifically the taper ratio and the span length. Next, we conduct a multi-objective optimization scheme based on the response surface method, using the present baseline configuration. We consider the structural integrity as one of the constraints. We reduce the wing weight by approximately 25.3 % from that in the baseline configuration, and also decrease the power required approximately 3.4 %. We confirm that the optimized wing has sufficient flutter margin and improved static longitudinal/directional stability characteristics, as compared to those of the baseline configuration.

Propulsion Installation Design on Wing-Mounted-Nacelle Type (주익장착방식의 추진기관 장착설계)

  • 진광석;최광윤;공창덕
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.1
    • /
    • pp.88-94
    • /
    • 1998
  • Installation design methods and results of an aircraft engine on the wing-mounted-nacelle type aircraft has been presented in this paper. The design process starts from design requirements and constraints and covers some major aspects of the engine installation design such as wing-nacelle interference drag, roll clearance, ground clearance, nose gear collapse margin, rotor burst and fuel tank capacity. The method was applied to 100-seat class airplane(K100). Results of the design suggest optimum nacelle location and nacelle installation angle(toe-in, incidence, droop angle) which satisfies in stalled engine performance and size/location of wing dry day.

  • PDF