• Title/Summary/Keyword: winding process

Search Result 211, Processing Time 0.032 seconds

Fabrication and Test of Multiple HTS Wire with Transposition for HTS Power Transformer

  • Kim, Woo-Seok;Park, Chan;Choi, Kyeong-Dal
    • Progress in Superconductivity and Cryogenics
    • /
    • v.10 no.2
    • /
    • pp.34-37
    • /
    • 2008
  • According to the recent design of an HTS (High Temperature Superconducting) power transformer whose capacity is hundreds MVA, the rated current values of the low voltage side are generally over thousands amps. Considering the performance of the recent HTS wires, it is inevitable to use several HTS wires in parallel for large rated current. Lots of stacked HTS wires were fabricated and tested so far, and the results have showed that we have to transpose each wire in order to reduce the AC losses as well as to increase the current capacity. But many development programs about HTS transformers reveal that the transposition of the several wires during the winding process is quite difficult not only in case of the layer windings but also in case of the pancake type ones. So, we need transposed multiple HTS wire which we can handle like single wire or cable for the HTS windings of large capacity power transformer. We fabricated several kinds of samples of multiple HTS wire with transposition to apply it to the HTS windings of power transformer. The electrical characteristics such as critical currents or AC losses are analyzed by experiments in case by case. Finally we present the best design of a multiple HTS wire for power transformer.

Evolution of Coronal Magnetic Fields Consisting of Flux Ropes and Overlying Fields

  • Jun, Hongdal;Yi, Sibaek;Choe, G.S.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.69.1-69.1
    • /
    • 2019
  • A series of numerical MHD simulations are performed to investigate the evolution of coronal magnetic fields consisting of two flux ropes and an overlying field. Depending on the directions of the axial current and the axial field, two co-helicity cases and two counter-helicity cases are addressed. In Case 1, in which both the axial currents and the axial fields are parallel, flux rope merging bears a huge flux rope with a large winding number. This flux rope naturally erupts, but the whole evolutionary process is rather slow. In Case 2, in which the axial currents are parallel while the axial fields are antiparallel, a self-closed structure is formed and it drives eruption. In Case 3, in which the axial currents are antiparallel and the axial fields are parallel, each flux rope erupts independently and the presence of the other flux rope does not affect the eruption of one flux rope. In Case 4, in which both the axial currents and the axial fields are antiparallel, interaction of the flux ropes and the overlying field effects a breakout reconnection creating an apple-like CME configuration. Our study tells what kind of eruption mechanisms are involved for different eruption features observed.

  • PDF

Experience of Religion-making in Modern Japan: In the Case of Konko-kyo and Hukko-shinto (近代における <宗教> 化体験 - 金光教と復古神道を事例として -)

  • 桂島宣弘
    • Journal of the Daesoon Academy of Sciences
    • /
    • v.18
    • /
    • pp.81-99
    • /
    • 2004
  • This text discusses trends in the construction of religions since the Meiji Era, using Konkokyo and Restoration Shintoism as examples. The construction of religions is applied here as the process of a deliberate acceptace of religious images as a discourse of "Civilization" endowed with "kyougi" or "Doctrine" and "kyousoku" or "Rules of Instruction." Winding through a meandering path, these constructed religions do not take precedence over "Jikyou" or "State Religion." Yet, "Jikyou" for a while was fixed in its own fragemented self-imagery. As for Shinto, in 1900, the Office of Shinto Shrines became independent from the Office of Shrines and Temples in the Department of Domestic Affairs, and clearly Shinto and Shinto Shrines were part of secular state ideology. In the Bakumatsu and Meiji Periods, it ultimately was cut off from Restoration Shinto, thereby achieving this development on its own. This tells of the formation of an entirely new and modern Shinto within a secular "Jikyou." Konkokyo, moreover, as a religion establishes "kyousoku" and "kyougi." As a Shinto sect, it takes steps on the path toward recognizing a self-identity, namely as religious Shinto. As a result, dogmatization and systemization progress, and "Byoukinaoshi" or "illness-recovery" from the Tokugawa Period weathers. Also, as for progress in the Shinto religious order, from its foundation, the characteristics of a unified state and religion emerge, and thus there is an acceptance of significant restrictions. This dillema continues to persist as a problem in postwar Japan. Shedding light on Tokugawa Era practice also sheds light on where we can now take religious concepts.

  • PDF

Development and Evaluation for the Insulated Coupling Test Machine of a Large Wind Turbine (대형 풍력터빈 절연커플링 시험장치 개발 및 평가)

  • Ju, Sung Ha;Kim, Dong Hyun;Oh, Min Woo;Kim, Su Hyun;Kang, Jong Hun;Bae, Jun Wu;Lee, Hyoung Woo;Kim, Kyung He
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.8
    • /
    • pp.543-556
    • /
    • 2016
  • In this work, an insulated coupling test machine for a 5-MW-class wind turbine was designed and developed, along with the public performance testing of a 3-MW-class wind turbine. The results of the device design, development requirements, functional considerations, structural vibration analysis, and the evaluation of the insulated coupling test machine are presented in this study. For the coupling models, thick fiberglass composite pipe insulation, fabricated by filament winding, was considered. Results of three-dimensional finite element analysis conducted using both solid element and shell element modeling were analyzed and compared, considering the effect of thickness. In addition, results from the nonlinear finite element analysis of multiple leaf springs of the laminated disk pack structure were verified and compared with experimental data.

A 2.4-GHz Dual-Mode CMOS Power Amplifier with a Bypass Structure Using Three-Port Transformer to Improve Efficiency (3-포드 변압기를 이용한 바이패스 구조를 적용하여 효율이 개선된 이중 모드 2.4-GHz CMOS 전력 증폭기)

  • Jang, Joseph;Yoo, Jinho;Lee, Milim;Park, Changkun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.6
    • /
    • pp.719-725
    • /
    • 2019
  • We propose a 2.4-GHz CMOS power amplifier (PA) with a bypass structure to improve the power-added efficiency (PAE) in the low-power region. The primary winding of the output transformer is split into two parts. One of the primary windings is connected to the output of the power stage for high-power mode. The other primary winding is connected to the output of the driver stage for low-power mode. Operation of the high power mode is similar to conventional PAs. On the other hand, the output power of the driver stage becomes the output power of the overall PA in the low power mode. Owing to a turning-off of the power stage, the power consumption is decreased in low-power mode. We designed the CMOS PA using a 180-nm RFCMOS process. The measured maximum output power is 27.78 dBm with a PAE of 20.5%. At a measured output power of 16 dBm, the PAE is improved from 2.5% to 12.7%.

Structure Safety Analysis of Composite Lattice Structure with Inspection Window (복합재 격자구조물의 점검창 형상에 따른 구조안전성 해석)

  • Kim, Dong-geon;Bae, Ju-chan;Son, Jo-wha;Lee, Sang-woo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.6
    • /
    • pp.94-103
    • /
    • 2018
  • The purpose of designing composite lattice structure which applied to launching vehicle and tactical missile body is to minimize the thickness and weight for applied load. It is usually made of carbon fiber; fabricating with filament winding process over silicon mold, and provided with a window opening for inspection purpose if necessary. In this paper compression test is conducted without window opening in lattice structure and preliminary FEA is carried out to confirm its accuracy. And then FEA is performed for the case of window opening to evaluate the soundness and the safety factor of the structure. We have calculated for two kinds of window shape; rectangular one and hexagonal one. And we have calculated safety factors of the lattice structure with window opening in every case based on failure strength of rib and knot with varying the thickness and location of the window for hexagonal shape. Through our investigation, we have found out the followings; (1) the hexagonal shaped window is shown higher safety factor than rectangular one, (2) a window in a certain location is shown higher safety factor than others, (3) although the soundness of window structure is improved as increasing its thickness, a window of a certain thickness is shown higher safety factor than others because of stress concentration.

Low Velocity Impact Property of CF/Epoxy Laminate according to Interleaved Structure of Amorphous Halloysite Nanotubes (비정질 할로이사이트 나노입자의 교차적층 구조에 따른 탄소섬유/에폭시 라미네이트의 저속 충격 특성)

  • Ye-Rim Park;Sanjay Kumar;Yun-Hae Kim
    • Composites Research
    • /
    • v.36 no.4
    • /
    • pp.270-274
    • /
    • 2023
  • The stacking configuration of fiber-reinforced polymer (FRP) composites, achieved via the filament winding process, exhibits distinct variations compared to conventional FRP composite stacking arrangements. Consequently, it becomes challenging to ascertain the influence of mechanical properties based on the typical stacking structures. Thus, it becomes imperative to enhance the mechanical behavior and optimize the interleaved structures to improve overall performance. Therefore, this study aims to investigate the impact of incorporating amorphous halloysite nanotubes (A-HNTs) within different layers of five unique layer arrangements on the low-velocity impact properties of interleaved carbon fiber-reinforced polymer (CFRP) structures. The low-velocity impact characteristics of the laminate were validated using a drop weight impact test, wherein the resulting impact damage modes and extent of damage were compared and evaluated under microscopic analysis. Each interleaved structure laminate according to whether nanoparticles are added was compared at impact energies of 10 J and 15 J. In the case of 10 J, the absorption energy showed a similar tendency in each structure. However, at 15 J, the absorption energy varies from structure to structure. Among them, a structure in which nanoparticles are not added exhibits the highest absorption energy. Additionally, various impact fracture modes were observed in each structure through optical microscopy.

Application of reinforcement learning to hyper-redundant system Acquisition of locomotion pattern of snake like robot

  • Ito, K.;Matsuno, F.
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.01a
    • /
    • pp.65-70
    • /
    • 2001
  • We consider a hyper-redundant system that consists of many uniform units. The hyper-redundant system has many degrees of freedom and it can accomplish various tasks. Applysing the reinforcement learning to the hyper-redundant system is very attractive because it is possible to acquire various behaviors for various tasks automatically. In this paper we present a new reinforcement learning algorithm "Q-learning with propagation of motion". The algorithm is designed for the multi-agent systems that have strong connections. The proposed algorithm needs only one small Q-table even for a large scale system. So using the proposed algorithm, it is possible for the hyper-redundant system to learn the effective behavior. In this algorithm, only one leader agent learns the own behavior using its local information and the motion of the leader is propagated to another agents with time delay. The reward of the leader agent is given by using the whole system information. And the effective behavior of the leader is learned and the effective behavior of the system is acquired. We apply the proposed algorithm to a snake-like hyper-redundant robot. The necessary condition of the system to be Markov decision process is discussed. And the computer simulation of learning the locomotion is demonstrated. From the simulation results we find that the task of the locomotion of the robot to the desired point is learned and the winding motion is acquired. We can conclude that our proposed system and our analysis of the condition, that the system is Markov decision process, is valid.

  • PDF

The Effect of the Fiber Volume Fraction Non-uniformity and Resin Rich Layer on the Rib Stiffness Behavior of Composite Lattice Structures (섬유체적비 불균일 및 수지응집층이 복합재 격자 구조체 리브의 강성도 거동에 미치는 영향)

  • Kang, Min-Song;Jeon, Min-Hyeok;Kim, In-Gul;Kim, Mun-Guk;Go, Eun-Su;Lee, Sang-Woo
    • Composites Research
    • /
    • v.31 no.4
    • /
    • pp.161-170
    • /
    • 2018
  • Cylindrical composite lattice structures are manufactured by filament winding process. The fiber volume fraction non-uniformity and resin rich layers that can occur in the manufacturing process affect the stiffness and strength of the structure. Through the cross-section examination of the hoop and helical ribs, which are major elements of the composite lattice structure, we observed the fiber volume fraction non-uniformity and resin rich layers. Based on the results of the cross-section examination, the stiffness of the ribs was analyzed through the experimental and theoretical approaches. The results show that the fiber volume fraction non-uniformity and resin rich layers have an obvious influence on the rib stiffness of composite lattice structure.

Effects of Separator Carbonization on the Characteristics of Aluminium Polymer Condenser (알루미늄 고분자 콘덴서의 특성에 대한 절연지 탄화의 영향)

  • Kim, Jae Kun;Yu, Hyung Jin;Hong, Yoong He;Park, Mi Jin;Park, Seung Youl
    • Applied Chemistry for Engineering
    • /
    • v.17 no.5
    • /
    • pp.539-546
    • /
    • 2006
  • A study on the polymerization of polyethylenedioxythiophene (PEDOT) and the carbonization process of a separator was carred out in order to apply conductive polymer PEDOT to the winding typed aluminum condenser as a solid electrolyte and a negative electrode. PEDOT was polymerized with ethylenedioxythiophene (EDOT) as a monomer and ferric-p-toluenesulfonate as an oxidizing agent. The separator of condenser element was carbonized to control its fibrous tissue for the purpose of making it easy to impregnate the PEDOT solution into the microporous etched pit of aluminum foil by preventing separator from concentrating the PEDOT solution on itself. The characteristics of condenser such as capacitance, dissipation factor, equivalent series resistance, and thermal resistance depended on a carbonization temperature and a carbonization time. It was found that a thickness and a density of the used separator were major parameters of carbonization process and the characteristics of condenser were affected by these parameters.