• 제목/요약/키워드: winding methods

검색결과 143건 처리시간 0.021초

TRIAC을 이용한 커패시터 운전형 단상 유도전동기의 속도제어 특성 (Speed Control Characteristics of Capacitor-Run Single Phase Induction Motor Using TRIAC)

  • 이승용;윤덕용
    • 전기학회논문지
    • /
    • 제61권9호
    • /
    • pp.1283-1288
    • /
    • 2012
  • This paper presents speed control characteristics of capacitor-run SPIM(Single Phase Induction Motor) using TRIAC for comparing and analyzing four kinds of voltage control methods such as supply voltage control, main winding voltage control, auxiliary winding voltage control and auxiliary winding voltage control without starting capacitor. The computer simulations were performed using MATLAB Simulink to show control characteristics of four voltage control methods. And their control characteristics were conformed by experiments for capacitor-run 90W SPIM as a sample motor. The results of simulations and experiments show that supply voltage control method has fast dynamic response characteristics and main winding voltage control method has higher power efficiency and can be implemented at lower system cost.

Stator inter-turn fault 발생 시 권선 방식에 따른 IPM Type BLDC Motor의 Fault Tolerance 향상 (Fault Tolerance Improvement of IPM Type BLDC Motor Considering Winding Configuration under a Stator Inter-Turn Fault Condition)

  • 김희운;윤진규;허진
    • 전기학회논문지
    • /
    • 제60권3호
    • /
    • pp.524-530
    • /
    • 2011
  • This paper analyzes fault tolerance under a stator turn fault, according to the winding configuration. Improvement of torque characteristics and fault tolerance can be achieved by winding configuration without additional methods. And, torque characteristics and fault tolerance according to the winding configuration can be usually analyzed by analytical method. But, when the stator turn fault generates, compare to the steady-state, analysis of torque characteristics and fault tolerance using the analytical method is not accurate because it does not reflect influence in mutual inductance and magnetic non-linearity. Therefore, analysis of torque characteristics and fault tolerance has to be performed by using the numerical method under fault condition. This paper develops fault characteristics according to the winding configuration using the FEM-base model considered magnetic non-linearity. And, this paper suggests fault tolerance improvement according to the winding configuration, by the comparison of 8/12 and 10/12 models, under fault condition.

변압기 권선변형 진단에 적용하기 위한 LVI 시험기 개발 (The development of LVI tester for application of transformers winding deformation diagnosis)

  • 조국희;김광화
    • 조명전기설비학회논문지
    • /
    • 제16권5호
    • /
    • pp.97-103
    • /
    • 2002
  • 본 논문은 LVI 시험기를 개발하여 모델 변압기 및 유입식 변압기에 적용해 LVI 시험 분석기술을 개발하였다. LVI시험기는 본체, 터미널 박스 및 케이블로 구성하였고, ANSI규격에서 요구하는 출력특성을 갖도록 설계 제작하였다. 모델 변압기는 탭들을 만들어 변압기의 권선변형 모델을 만들 수 있도록 하였고, 유입식 변압기는 실제 현장에서 사용되는 3상 변압기이다. LVI 시험기는 펄스폭이 1000 ㎱ 이하의 파두 시간과 펄스 최대 전압 500 V로 제작되었다. LVI 시험기로써 실험을 실시하여 성능을 평가한 결과 측정된 파형 분석으로 권선의 축방향과 반경방향으로의 움직임을 구별할 수 있어 변압기 예방 진단에도 효과가 기대된다.

차량용 200bar 급 Type 3 복합재 압력용기의 개발 및 설계인증시험 (Development of high-pressure Type 3 composite cylinder for compressed hydrogen storage of fuel cell vehicle)

  • 정상수;박지상;김태욱;정재한
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 춘계학술발표대회 논문집
    • /
    • pp.203-206
    • /
    • 2005
  • The objective of study on composite cylinder for alternative fuel vehicle is to develop safe, efficient, and commercially viable, on-board fuel storage system for the fuel cell vehicle or natural gas vehicle that use highly compressed gaseous fuel such as hydrogen or natural gas. This study presents the whole procedure of development and certification of a type 3 composite cylinder of 207bar service pressure and 70 liter water capacity, which includes design/analysis, processing of filament winding, and validation through various testing and evaluation. Design methods of liner configuration and winding patterns are presented. Three dimensional, nonlinear finite element analysis techniques are used to predict burst pressure and failure mode. Design and analysis techniques are verified through burst and cycling tests. The full qualification test methods and results for validation and certification are presented.

  • PDF

쇄교자속비를 이용한 3권선 변압기 보호 (Three-Winning Transformer Protection Based on Flux Linkage Ratio)

  • 강용철;이병은;김은숙;원성호
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제53권7호
    • /
    • pp.375-381
    • /
    • 2004
  • This paper describes a three-winding transformer protective relaying algorithm based on the ratio of increments of flux linkages (RIFL). To minimize the approximation errors, the algorithm uses integration approximation. The RIFL of the two windings is equal to the turns ratio for all operating conditions except for an internal fault. For a single-phase and three-phase transformer containing the wye-connected windings, the increments of flux linkages (IFL) are calculated. For a three-phase transformer containing the delta-connected windings, the difference of IFL between the two phases are calculated to use the line currents, because the winding currents are practically unavailable. Their ratios are compared with the turns ratio. The comparative study between the proposed and differential approximation methods was conducted. The test results show that the algorithm can reduce the errors resulting from the conventional methods.

물리적 처리가 잉크젯 코팅지 생산 과정 중에 발생되는 컬에 미치는 영향 (Effect of Physical Treatments on Curl in Inkjet Coated Paper During Papermaking)

  • 임연주;남원석;백기현
    • 펄프종이기술
    • /
    • 제36권2호
    • /
    • pp.39-46
    • /
    • 2004
  • In this paper, the effects of roll diameter and storage time in roll form, bending method and relative humidity on curl in copy paper and inkjet coated papers are investigated. In copy paper, more MD curl is showed at smaller roll diameter and the extension of bending time. However CD curl is hardly influenced by roll diameter and bending time. At high relative humidity, especially CD curl largely reduces. All inkjet coated papers without the primary or the secondary back coating during papermaking show the increase in MD curl and slight decrease in CD curl by MD bending regardless of the winding methods(TSO, TSI). The water spray as back coating results in the remarkable reduction of CD curl regardless of the winding methods. Drying on flat dryer after spraying the moisture on back side display the most excellent effect on the reduction of CD curl.

전압 증가에 따른 자속구속형 고온 초전도 전류제한기의 사고전류 제한 특성 (The Fault Current Limiting Characteristics According to Increase of Voltage in a Flux-Lock Type High-Tc Superconducting Fault Current Limiter)

  • 조용선;박형민;임성훈;박충렬;한병성;최효상;현옥배;황종선
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 추계학술대회 논문집 전기설비전문위원
    • /
    • pp.93-96
    • /
    • 2004
  • In this paper, we analyzed the current limiting characteristics according to increase of source voltage in the flux-lock type high-Tc superconducting fault current limiter (SFCL). The flux-lock type SFCL consisted of two coils, which were wound in parallel each other through an iron core, and high-Tc superconducting (HTSC) element connected with coil 2 in series. The flux-lock type SFCL has the characteristics better in comparison with the resistive type SFCL because the fault current in the flux-lock type SFCL can be divided into two coils by the inductance ratio of coil 1 and coil 2. The fault current limiting operation of the flux-lock type SFCL can be different due to winding direction of the two coils. The winding method where the decrease of linkage flux between two coils in the accident happens is called the subtractive polarity winding and the winding method in case of the increase of linkage flux is called the additive polarity winding. The fault current limiting experiments according to the source voltage were performed for these two winding methods. Through the comparison and the analysis of the experimental data, we confirmed that the quench time was shorter, irrespective of the winding direction as the source voltage increased and that the fault current and the HTSC's resistance increased as the amplitude of the source voltage increased. The additive polarity winding made the fast quench time and the lower resistance of HTSC element in comparison with the subtractive polarity winding. The fault current of the subtractive polarity winding was larger than that of the additive polarity winding. In conclusion, we found that the additive polarity winding reduced the burden of SFCL because the quench time was shorter and the fault current was smaller than those of the subtractive polarity winding.

  • PDF

Comparison of Biot-Savart's Law and 3D FEM in the Study of Electromagnetic Forces Acting on End Winding

  • Kim, Ki-Chan
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권3호
    • /
    • pp.369-374
    • /
    • 2011
  • An induction motor operated with high voltage source generally generates high current in starting mode and has a long transient time after being started. This large and sustaining starting current causes the end windings of the stator to have excessive electromagnetic force. This force is the source of vibration and has a negative and serious influence on the insulation of end windings. Therefore, designing the end winding part with an appropriate support system is needed. To design the support ring enclosing the end windings, we analyze the distribution of electromagnetic force on the end windings by applying the Biot-Savart's law and the 3D finite element method (FEM), and comparing two simulation methods. Finally, we verify the safety of the support structure of the end winding part using stress analysis, which is analyzed with the electromagnetic forces from the 3D FEM simulation.

Designs of 10 MW Air-core and Iron-core HTS Wind Power Generators

  • Sung, Hae-Jin;Park, Minwon;Yu, In-Keun
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권2호
    • /
    • pp.545-550
    • /
    • 2015
  • High Temperature Superconducting (HTS) synchronous generators can be designed with either an air-core type or iron-core type. The air-core type has higher efficiency under rated rotating speed and load than the iron-core type because of the iron losses which may produce much heat. However, the total length of HTS wire in the air-core type is longer than the iron-core type because the generated magnetic flux density of the air-core type is low. This paper deals with designs of 10 MW air-core and iron-core HTS wind power generators for wind turbines. Fully air-core, partially iron-core, and fully iron-core HTS generators are designed, and various stator winding methods in the three HTS generators are also considered, such as short-pitch concentrated winding, full-pitch concentrated winding, short-pitch distributed winding, and full-pitch distributed winding. These HTS generators are analyzed using a 3D finite elements method program. The analysis results of the HTS generators are discussed in detail, and the results will be effectively utilized for large-scale wind power generation systems.

딥러닝 AI 솔루션을 활용한 전기자동차 헤어핀 권선 모터의 용접 품질향상에 관한 사례연구 (A Case Study on Quality Improvement of Electric Vehicle Hairpin Winding Motor Using Deep Learning AI Solution)

  • 이승준;심진섭;최정일
    • 품질경영학회지
    • /
    • 제51권2호
    • /
    • pp.283-296
    • /
    • 2023
  • Purpose: The purpose of this study is to actually implement and verify whether welding defects can be detected in real time by utilizing deep learning AI solutions in the welding process of electric vehicle hairpin winding motors. Methods: AI's function and technological elements using synthetic neural network were applied to existing electric vehicle hairpin winding motor laser welding process by making special hardware for detecting electric vehicle hairpin motor laser welding defect. Results: As a result of the test applied to the welding process of the electric vehicle hairpin winding motor, it was confirmed that defects in the welding part were detected in real time. The accuracy of detection of welds was achieved at 0.99 based on mAP@95, and the accuracy of detection of defective parts was 1.18 based on FB-Score 1.5, which fell short of the target, so it will be supplemented by introducing additional lighting and camera settings and enhancement techniques in the future. Conclusion: This study is significant in that it improves the welding quality of hairpin winding motors of electric vehicles by applying domestic artificial intelligence solutions to laser welding operations of hairpin winding motors of electric vehicles. Defects of a manufacturing line can be corrected immediately through automatic welding inspection after laser welding of an electric vehicle hairpin winding motor, thus reducing waste throughput caused by welding failure in the final stage, reducing input costs and increasing product production.