• Title/Summary/Keyword: wind wave model

Search Result 316, Processing Time 0.027 seconds

Generation and Growth of Long Ocean Waves along the West Coast of Korea in March 2007 (2007년 3월 한국 서해안에 발생한 해양장파의 형성과 성장과정)

  • Choi, Byoung-Ju;Park, Yong-Woo;Kwon, Kyung-Man
    • Ocean and Polar Research
    • /
    • v.30 no.4
    • /
    • pp.453-466
    • /
    • 2008
  • In order to examine the generation mechanism of long ocean waves along the west coast of Korea and to understand the amplification process of the long ocean waves, sea level, atmospheric pressure and wind data observed every minute from 2007 March 29 to 2007 April 1 were analyzed and onedimensional numerical ocean model experiments were performed. An atmospheric pressure jump propagated southeastward from Backryungdo to Yeonggwang along the west coast of Korea with speed of $13{\sim}27\;m/s$ between 2007 March 30 23:00 and 2007 April 1 1:30. Average magnitude of pressure jump was 4.2 hPa. As a moving atmospheric jump propagated from north to south along the coast, long ocean waves were generated and the sea level abnormally rose or fell at Anheung, Kunsan, Wido and Yeonggwang. Average amplitude of sea level rise (or fall) was about 113.6 cm. In a one-dimensional numerical ocean model, nonlinear shallow water equations were numerically integrated and a moving atmospheric pressure jump with traveling speed of 24 m/s was used as an external force. While the atmospheric pressure jump travels over 60 m depth ocean, a long ocean wave is generated. Because the propagation speed of the atmospheric jump is almost equal to that of the long ocean wave, Proudman resonance occurs and the long ocean wave amplifies. As the atmospheric pressure jump moves into the coastal area shallower than 60 m, the speed of the long ocean wave decreases and Proudman resonance effect decreases. However, the amplitude of the long ocean wave increases and wave length becomes shorter because of shoaling effect. When the long ocean wave hits the land boundary, amplitude of the long ocean wave drastically amplifies due to reflection. Data analysis and numerical experiments suggest that the southeastward propagation of an atmospheric pressure jump over the shallow ocean, which is a necessary condition for Proudaman resonance, generated the long ocean waves along the west coast of Korea on 2007 March 31 and the ocean waves amplified due to shoaling effect in the coastal area and reflection at the shore.

PROPAGATION OF SUDDEN IMPULSES IN A DIPOLAR MAGNETOSPHERE

  • LEE DONG-HUN;SUNG SUK-KYUNG
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.spc1
    • /
    • pp.101-107
    • /
    • 2003
  • The magnetosphere is often perturbed by impulsive input such as interplanetary shocks and solar wind discontinuities. We study how these initial perturbations are propagating within the magnetosphere over various latitude regions by adopting a three-dimensional numerical dipole model. We examine the wave propagation on a meridional plane in a time-dependent manner and compare the numerical results with multi-satellite and ground observations. The dipole model is used to represent the plasmasphere and magnetosphere with a realistic Alfven speed profile. It is found that the effects of refraction, which result from magnetic field curvature and inhomogeneous Alfven speed, are' found to become important near the plasmapause. Our results show that, when the disturbances are assumed at the subsolar point of the dayside magnetosphere, the travel time becomes smaller to the polar ionosphere compared to the equatorial ionosphere.

Effect of Nonlinear Interaction to the Response of a Wave Spectrum to a Sudden Change in Wind Direction (풍속변화에 따른 파랑 스펙트럼 반응에서의 비선형 효과)

  • 윤종태
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.8 no.2
    • /
    • pp.151-160
    • /
    • 1996
  • To construct the third generation model, nonlinear interaction was included in source terms. To calculate the nonlinear interaction, discrete interaction approximation to Boltzmann integral was used, as in WAM model. The general behavior and characteristics of nonlinear interaction were analyzed through the experiments for the durational growth and turning winds.

  • PDF

Impact of Hull Condition and Propeller Surface Maintenance on Fuel Efficiency of Ocean-Going Vessels

  • Tien Anh Tran;Do Kyun Kim
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.181-189
    • /
    • 2023
  • The fuel consumption of marine diesel engines holds paramount importance in contemporary maritime transportation and shapes energy efficiency strategies of ocean-going vessels. Nonetheless, a noticeable gap in knowledge prevails concerning the influence of ship hull conditions and propeller roughness on fuel consumption. This study bridges this gap by utilizing artificial intelligence techniques in Matlab, particularly convolutional neural networks (CNNs) to comprehensively investigate these factors. We propose a time-series prediction model that was built on numerical simulations and aimed at forecasting ship hull and propeller conditions. The model's accuracy was validated through a meticulous comparison of predictions with actual ship-hull and propeller conditions. Furthermore, we executed a comparative analysis juxtaposing predictive outcomes with navigational environmental factors encompassing wind speed, wave height, and ship loading conditions by the fuzzy clustering method. This research's significance lies in its pivotal role as a foundation for fostering a more intricate understanding of energy consumption within the realm of maritime transport.

An Application of Statistical Downscaling Method for Construction of High-Resolution Coastal Wave Prediction System in East Sea (고해상도 동해 연안 파랑예측모델 구축을 위한 통계적 규모축소화 방법 적용)

  • Jee, Joon-Bum;Zo, Il-Sung;Lee, Kyu-Tae;Lee, Won-Hak
    • Journal of the Korean earth science society
    • /
    • v.40 no.3
    • /
    • pp.259-271
    • /
    • 2019
  • A statistical downscaling method was adopted in order to establish the high-resolution wave prediction system in the East Sea coastal area. This system used forecast data from the Global Wave Watch (GWW) model, and the East Sea and Busan Coastal Wave Watch (CWW) model operated by the Korea Meteorological Administration (KMA). We used the CWW forecast data until three days and the GWW forecast data from three to seven days to implement the statistical downscaling method (inverse distance weight interpolation and conditional merge). The two-dimensional and station wave heights as well as sea surface wind speed from the high-resolution coastal prediction system were verified with statistical analysis, using an initial analysis field and oceanic observation with buoys carried out by the KMA and the Korea Hydrographic and Oceanographic Agency (KHOA). Similar to the predictive performance of the GWW and the CWW data, the system has a high predictive performance at the initial stages that decreased gradually with forecast time. As a result, during the entire prediction period, the correlation coefficient and root mean square error of the predicted wave heights improved from 0.46 and 0.34 m to 0.6 and 0.28 m before and after applying the statistical downscaling method.

An integral quasi-3D computational model for the hygro-thermal wave propagation of imperfect FGM sandwich plates

  • Abdelouahed Tounsi;Saeed I. Tahir;Mohammed A. Al-Osta;Trinh Do-Van;Fouad Bourada;Abdelmoumen Anis Bousahla;Abdeldjebbar Tounsi
    • Computers and Concrete
    • /
    • v.32 no.1
    • /
    • pp.61-74
    • /
    • 2023
  • This article investigates the wave propagation analysis of the imperfect functionally graded (FG) sandwich plates based on a novel simple four-variable integral quasi-3D higher-order shear deformation theory (HSDT). The thickness stretching effect is considered in the transverse displacement component. The presented formulation ensures a parabolic variation of the transverse shear stresses with zero-stresses at the top and the bottom surfaces without requiring any shear correction factors. The studied sandwich plates can be used in several sectors as areas of aircraft, construction, naval/marine, aerospace and wind energy systems, the sandwich structure is composed from three layers (two FG face sheets and isotropic core). The material properties in the FG faces sheet are computed according to a modified power law function with considering the porosity which may appear during the manufacturing process in the form of micro-voids in the layer body. The Hamilton principle is utilized to determine the four governing differential equations for wave propagation in FG plates which is reduced in terms of computation time and cost compared to the other conventional quasi-3D models. An eigenvalue equation is formulated for the analytical solution using a generalized displacements' solution form for wave propagation. The effects of porosity, temperature, moisture concentration, core thickness, and the material exponent on the plates' dispersion relations are examined by considering the thickness stretching influence.

Structural Analysis of Floating Offshore Wind Turbine Tower Based on Flexible Multibody Dynamics (탄성 다물체계 동역학을 기반으로 한 부유식 해상 풍력 발전기 타워의 구조 해석)

  • Park, Kwang-Phil;Cha, Ju-Hwan;Ku, Namkug;Jo, A-Ra;Lee, Kyu-Yeul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1489-1495
    • /
    • 2012
  • In this study, we perform the structural analysis of a floating offshore wind turbine tower by considering the dynamic response of the floating platform. A multibody system consisting of three blades, a hub, a nacelle, the platform, and the tower is used to model the floating wind turbine. The blades and the tower are modeled as flexible bodies using three-dimensional beam elements. The aerodynamic force on the blades is calculated by the Blade Element Momentum (BEM) theory with hub rotation. The hydrostatic, hydrodynamic, and mooring forces are considered for the platform. The structural dynamic responses of the tower are simulated by numerically solving the equations of motion. From the simulation results, the time history of the internal forces at the nodes, such as the bending moment and stress, are obtained. In conclusion, the internal forces are compared with those obtained from static analysis to assess the effects of wave loads on the structural stability of the tower.

Study on Optimal Damping Model of Very Large Offshore Semi-submersible Structure (초대형 반잠수식 해양 구조물의 최적 감쇠 모델에 대한 고찰)

  • Lee, Hyebin;Bae, Yoon Hyeok;Kim, Dongeun;Park, Sewan;Kim, Kyong-Hwan;Hong, Keyyong
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • In order to analyze the response of the offshore structure numerically, the linear potential theory is generally applied for simplicity, and only the radiation damping is considered among various damping forces. Therefore, the results of a numerical simulation can be different from the motion of the structure in a real environment. To reduce the differences between the simulation results and experimental results, the viscous damping, which affects the motion of the structure, is also taken into account. The appropriate damping model is essential for the numerical simulation in order to obtain precise responses of the offshore structure. In this study, various damping models such as linear or quadratic damping and the nonlinear drag force from numerous slender bodies were used to simulate the free decay motion of the platform, and its characteristics were confirmed. The optimized damping model was found by comparing the simulation results to the experimental results. The hydrodynamic forces and wave exciting forces of the structure were obtained using WAMIT, and the free decay test was simulated using OrcaFlex. A free decay test of the scale model was performed by KRISO.

Model Design and Demonstration Test for the Verification of Temperature Reduction Effect of Cooling Fog System with Stainless Steel (스테인리스 쿨링포그의 온도저감효과 검증을 위한 모델설계 및 실증 실험)

  • Kim, Jaekyoung;Kang, Junsuk;Kim, Hoijin
    • Journal of Environmental Science International
    • /
    • v.29 no.6
    • /
    • pp.683-689
    • /
    • 2020
  • According to a NASA Goddard Institute for Space Studies report, temperatures have risen by approximately 1℃ so far, based on temperatures recorded in 1880. The 2003 heatwave in Europe affected approximately 35,000 people across Europe. In this study, a cooling fog, which is used in smart cities, was designed to efficiently reduce the temperature during a heatwave and its pilot test results were interpreted. A model experiment of the cooling fog was conducted using a chamber, in which nano mist spray instruments and spray nozzles were installed. The designed cooling fog chamber model showed a temperature reduction of up to 13.8℃ for artificial pavement and up to 8.0℃ for green surfaces. However, this model was limited by constant wind speed in the experiment. Moreover, if the cooling fog is used when the wind speed is more than 3m/s in the active green zone, the temperature reduction felt by humans is expected to be even greater. As a second study, the effect of cooling fog on temperature reduction was analyzed by installing a pilot test inside the Land Housing Institute (LHI). The data gathered in this research can be useful for the study of heat reduction techniques in urban areas.

A Three-Dimensional Numerical Model of Hydrodynamic Flow on σ-Coordinate (연직변환좌표(鉛直變換座標)에서 3차원(次元) 유동(流動) 수직모형(數値模型))

  • Jung, Tae Sung;Lee, Kil Seong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.5
    • /
    • pp.1145-1158
    • /
    • 1994
  • A three-dimensional, finite difference, numerical model with free surface was developed on ${\sigma}$-coordinate. A semi-implicit numerical scheme in time has been adopted for computational efficiency. The scheme is essentially independent of the stringent stability criteria (CFL condition) for explicit schemes of external surface gravity wave. Implicit algorithm was applied for vertical shear stress, Coriolis force and pressure gradient terms. The reliability of the model with vertically variable grid system was checked by the comparison of simulation results with analytic solution of wind-driven currents in a one-dimensional channel. Sensitivity analysis of differencing parameters was carried out by applying the model to the calculation of wind-driven currents in a square lake.

  • PDF