• Title/Summary/Keyword: wind tunnel validations

Search Result 2, Processing Time 0.016 seconds

HFFB technique and its validation studies

  • Xie, Jiming;Garber, Jason
    • Wind and Structures
    • /
    • v.18 no.4
    • /
    • pp.375-389
    • /
    • 2014
  • The high-frequency force-balance (HFFB) technique and its subsequent improvements are reviewed in this paper, including a discussion about nonlinear mode shape corrections, multi-force balance measurements, and using HFFB model to identify aeroelastic parameters. To apply the HFFB technique in engineering practice, various validation studies have been conducted. This paper presents the results from an analytical validation study for a simple building with nonlinear mode shapes, three experimental validation studies for more complicated buildings, and a field measurement comparison for a super-tall building in Hong Kong. The results of these validations confirm that the improved HFFB technique is generally adequate for engineering applications. Some technical limitations of HFFB are also discussed in this paper, especially for higher-order mode response that could be considerable for super tall buildings.

Numerical Analysis and Experimental Study for Low Reynolds number region around Micro Air Vehicle (초소형 비행체 주위의 저 레이놀즈수 영역에 대한 수치 해석 및 실험적 연구)

  • Kim Y. H.;Kim W. R.;Kim C.;Rho O. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.05a
    • /
    • pp.53-58
    • /
    • 2002
  • A three-dimensional incompressible Navier-Stokes solver is developed for the flow analysis around Micro Air Vehicle(MAV) designed by MACDL(Micro Aerodynamic Control and Design Lab), Seoul National Univ., Validations of this solver are presented for two cases, first flow over the circular cylinder with infinite length, second flow over infinite wing with wing section, E387 airfoil. Simultaneously, Wind Tunnel test is performed with Flatform Wire type sir-component balance and model designed by MACDL. The numerical results are also examined through comparison with experimental data.

  • PDF